The natural transformations between r-tangent and r-cotangent bundles over Riemannian manifolds
Jan Kurek; Włodzimierz Mikulski
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2014)
- Volume: 68, Issue: 2
- ISSN: 0365-1029
Access Full Article
topAbstract
topHow to cite
topJan Kurek, and Włodzimierz Mikulski. "The natural transformations between r-tangent and r-cotangent bundles over Riemannian manifolds." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 68.2 (2014): null. <http://eudml.org/doc/289739>.
@article{JanKurek2014,
abstract = {If $(M,g)$ is a Riemannian manifold, we have the well-known base preserving vector bundle isomorphism $TM\mathrel \{\tilde\{=\}\}T^*M$ given by $v\rightarrow g(v,-)$ between the tangent $TM$ and the cotangent $T^*M$ bundles of $M$. In the present note, we generalize this isomorphism to the one $T^\{(r)\}M\mathrel \{\tilde\{=\}\} T^\{r*\}M$ between the $r$-th order vector tangent $T^\{(r)\}M=(J^r(M,R)_0)^*$ and the $r$-th order cotangent $T^\{r*\}M=J^r(M,R)_0$ bundles of $M$. Next, we describe all base preserving vector bundle maps $C_M(g):T^\{(r)\}M\rightarrow T^\{r*\}M$ depending on a Riemannian metric $g$ in terms of natural (in $g$) tensor fields on $M$.},
author = {Jan Kurek, Włodzimierz Mikulski},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {},
language = {eng},
number = {2},
pages = {null},
title = {The natural transformations between r-tangent and r-cotangent bundles over Riemannian manifolds},
url = {http://eudml.org/doc/289739},
volume = {68},
year = {2014},
}
TY - JOUR
AU - Jan Kurek
AU - Włodzimierz Mikulski
TI - The natural transformations between r-tangent and r-cotangent bundles over Riemannian manifolds
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2014
VL - 68
IS - 2
SP - null
AB - If $(M,g)$ is a Riemannian manifold, we have the well-known base preserving vector bundle isomorphism $TM\mathrel {\tilde{=}}T^*M$ given by $v\rightarrow g(v,-)$ between the tangent $TM$ and the cotangent $T^*M$ bundles of $M$. In the present note, we generalize this isomorphism to the one $T^{(r)}M\mathrel {\tilde{=}} T^{r*}M$ between the $r$-th order vector tangent $T^{(r)}M=(J^r(M,R)_0)^*$ and the $r$-th order cotangent $T^{r*}M=J^r(M,R)_0$ bundles of $M$. Next, we describe all base preserving vector bundle maps $C_M(g):T^{(r)}M\rightarrow T^{r*}M$ depending on a Riemannian metric $g$ in terms of natural (in $g$) tensor fields on $M$.
LA - eng
KW -
UR - http://eudml.org/doc/289739
ER -
References
top- Epstein, D. B. A., Natural tensors on Riemannian manifolds, J. Diff. Geom. 10 (1975), 631–645.
- Kobayashi, S., Nomizu, K., Foundations of Differential Geometry. Vol. I, J. Wiley- Interscience, New York–London, 1963.
- Kolář, I., Michor, P. W., Slovák, J., Natural Operations in Defferential Geometry, Springer-Verlag, Berlin, 1993.
- Kolář, I., Vosmanská, G., Natural transformations of higher order tangent bundles and jet spaces, Čas. pĕst. mat. 114 (1989), 181–186.
- Kurek, J., Natural transformations of higher order cotangent bundle functors, Ann. Polon. Math. 58, no. 1 (1993), 29–35.
- Mikulski, W. M., Some natural operators on vector fields, Rend Math. Appl (7) 12, no. 3 (1992), 783–803.
- Nijenhuis, A., Natural bundles and their general properties Diff. Geom. in Honor of K. Yano, Kinokuniya, Tokyo (1972), 317–334.
- Paluszny, M., Zajtz, A., Foundation of the Geometry of Natural Bundles, Lect. Notes Univ. Caracas, 1984.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.