Certain subclasses of starlike functions of complex order involving the Hurwitz-Lerch Zeta function

G. Murugusundaramoorthy; K. Uma

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2010)

  • Volume: 54, Issue: 2
  • ISSN: 0365-1029

Abstract

top
Making use of the Hurwitz-Lerch Zeta function, we define a new subclass of uniformly convex functions and a corresponding subclass of starlike functions with negative coefficients of complex order denoted by T S b μ ( α , β , γ ) and obtain coefficient estimates, extreme points, the radii of close to convexity, starlikeness and convexity and neighbourhood results for the class T S b μ ( α , β , γ ) . In particular, we obtain integral means inequalities for the function f ( z ) belongs to the class  T S b μ ( α , β , γ ) in the unit disc.

How to cite

top

G. Murugusundaramoorthy, and K. Uma. "Certain subclasses of starlike functions of complex order involving the Hurwitz-Lerch Zeta function." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 54.2 (2010): null. <http://eudml.org/doc/289741>.

@article{G2010,
abstract = {Making use of the Hurwitz-Lerch Zeta function, we define a new subclass of uniformly convex functions and a corresponding subclass of starlike functions with negative coefficients of complex order denoted by $TS^\mu _b(\alpha , \beta , \gamma )$ and obtain coefficient estimates, extreme points, the radii of close to convexity, starlikeness and convexity and neighbourhood results for the class $TS^\mu _b(\alpha , \beta , \gamma )$. In particular, we obtain integral means inequalities for the function $f(z)$ belongs to the class $TS^\mu _b(\alpha , \beta , \gamma )$ in the unit disc.},
author = {G. Murugusundaramoorthy, K. Uma},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Univalent; starlike, convex; uniformly convex; uniformly starlike; Hadamard product; integral means; Hurwitz-Lerch Zeta function},
language = {eng},
number = {2},
pages = {null},
title = {Certain subclasses of starlike functions of complex order involving the Hurwitz-Lerch Zeta function},
url = {http://eudml.org/doc/289741},
volume = {54},
year = {2010},
}

TY - JOUR
AU - G. Murugusundaramoorthy
AU - K. Uma
TI - Certain subclasses of starlike functions of complex order involving the Hurwitz-Lerch Zeta function
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2010
VL - 54
IS - 2
SP - null
AB - Making use of the Hurwitz-Lerch Zeta function, we define a new subclass of uniformly convex functions and a corresponding subclass of starlike functions with negative coefficients of complex order denoted by $TS^\mu _b(\alpha , \beta , \gamma )$ and obtain coefficient estimates, extreme points, the radii of close to convexity, starlikeness and convexity and neighbourhood results for the class $TS^\mu _b(\alpha , \beta , \gamma )$. In particular, we obtain integral means inequalities for the function $f(z)$ belongs to the class $TS^\mu _b(\alpha , \beta , \gamma )$ in the unit disc.
LA - eng
KW - Univalent; starlike, convex; uniformly convex; uniformly starlike; Hadamard product; integral means; Hurwitz-Lerch Zeta function
UR - http://eudml.org/doc/289741
ER -

References

top
  1. Alexander, J. W., Functions which map the interior of the unit circle upon simple regions, Ann. of Math. 17 (1915), 12-22. 
  2. Altintas, O., Ozkan, O. and Srivastava, H. M., Neighborhoods of a class of analytic functions with negative coefficients, Appl. Math. Lett. 13 (2000), 63-67. 
  3. Bernardi, S. D., Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969), 429-446. 
  4. Choi, J., Srivastava, H. M., Certain families of series associated with the Hurwitz-Lerch Zeta function, Appl. Math. Comput. 170 (2005), 399-409. 
  5. Ferreira, C., López, J. L., Asymptotic expansions of the Hurwitz-Lerch Zeta function, J. Math. Anal. Appl. 298 (2004), 210-224. 
  6. Flet, T. M., The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl. 38 (1972), 746-765 
  7. Garg, M., Jain, K. and Srivastava, H. M., Some relationships between the generalized Apostol-Bernoulli polynomials and Hurwitz-Lerch Zeta functions, Integral Transform. Spec. Funct. 17 (2006), 803-815. 
  8. Goodman, A. W., Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc. 8 (1957), 598-601. 
  9. Goodman, A. W., On uniformly convex functions, Ann. Polon. Math. 56 (1991), 87-92. 
  10. Goodman, A. W., On uniformly starlike functions, J. Math. Anal. Appl. 155 (1991), 364-370. 
  11. Jung, I. B., Kim, Y. C. and Srivastava, H. M., The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal.Appl. 176 (1993), 138-147. 
  12. Kanas, S., Wiśniowska, A., Conic regions and k-uniform convexity, J. Comput. Appl. Math. 105 (1999), 327-336. 
  13. Kanas, S., Wiśniowska, A., Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl. 45(4) (2000), 647-657. 
  14. Kanas, S., Srivastava, H. M., Linear operators associated with k-uniformly convex functions, Integral Transform. Spec. Funct. 9(2) (2000), 121-132. 
  15. Kanas, S., Yaguchi, T., Subclasses of k-uniformly convex and starlike functions defined by generalized derivative. II, Publ. Inst. Math. (Beograd) (N.S.) 69(83) (2001), 91-100. 
  16. Lin, S.-D., Srivastava, H. M., Some families of the Hurwitz-Lerch Zeta functions and associated fractional derivative and other integral representations, Appl. Math. Comput. 154 (2004), 725-733. 
  17. Lin, S.-D., Srivastava, H. M. and Wang, P.-Y., Some expansion formulas for a class of generalized Hurwitz-Lerch Zeta functions, Integral Transform. Spec. Funct. 17 (2006), 817-827. 
  18. Littlewood, J. E., On inequalities in theory of functions, Proc. London Math. Soc. 23 (1925), 481-519. 
  19. Murugusundaramoorthy, G., Srivastava H .M., Neighborhoods of certain classes of analytic functions of complex order, J. Inequal. Pure Appl. Math. 5(2) (2004), Art. 24, 1-8. 
  20. Prajapat, J. K., Goyal, S. P., Applications of Srivastava-Attiya operator to the classes of strongly starlike and strongly convex functions, J. Math. Inequal. 3 (2009), 129-137. 
  21. Raducanu, D., Srivastava, H. M., A new class of analytic functions defined by means of a convolution operator involving the Hurwitz-Lerch Zeta function, Integral Transform. Spec. Funct. 18 (2007), 933-943. 
  22. Rønning, F., Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118 (1993), 189-196. 
  23. Rønning, F., Integral representations for bounded starlike functions, Ann. Polon. Math. 60 (1995), 289-297. 
  24. Ruscheweyh, S., Neighborhoods of univalent functions, Proc. Amer. Math. Soc. 81 (1981), 521-527. 
  25. Silverman, H., Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975), 109-116. 
  26. Silverman, H., Integral means for univalent functions with negative coefficients, Houston J. Math. 23 (1997), 169-174. 
  27. Srivastava, H. M., Attiya, A. A., An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination, Integral Transform. Spec. Funct. 18 (2007), 207-216. 
  28. Srivastava, H. M., Choi, J., Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht, Boston, London, 2001. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.