On compactness and connectedness of the paratingent
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2016)
- Volume: 70, Issue: 2
- ISSN: 0365-1029
Access Full Article
topAbstract
topHow to cite
topWojciech Zygmunt. "On compactness and connectedness of the paratingent." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 70.2 (2016): null. <http://eudml.org/doc/289745>.
@article{WojciechZygmunt2016,
abstract = {In this note we shall prove that for a continuous function $\varphi : \Delta \rightarrow \mathbb \{R\}^n$, where $\Delta \subset \mathbb \{R\}$, the paratingent of $\varphi $ at $a\in \Delta $ is a non-empty and compact set in $\mathbb \{R\}^n$ if and only if $\varphi $ satisfies Lipschitz condition in a neighbourhood of $a$. Moreover, in this case the paratingent is a connected set.},
author = {Wojciech Zygmunt},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {},
language = {eng},
number = {2},
pages = {null},
title = {On compactness and connectedness of the paratingent},
url = {http://eudml.org/doc/289745},
volume = {70},
year = {2016},
}
TY - JOUR
AU - Wojciech Zygmunt
TI - On compactness and connectedness of the paratingent
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2016
VL - 70
IS - 2
SP - null
AB - In this note we shall prove that for a continuous function $\varphi : \Delta \rightarrow \mathbb {R}^n$, where $\Delta \subset \mathbb {R}$, the paratingent of $\varphi $ at $a\in \Delta $ is a non-empty and compact set in $\mathbb {R}^n$ if and only if $\varphi $ satisfies Lipschitz condition in a neighbourhood of $a$. Moreover, in this case the paratingent is a connected set.
LA - eng
KW -
UR - http://eudml.org/doc/289745
ER -
References
top- Aubin, J. P., Frankowska, H., Set-Valued Analysis, Birkhauser, Boston, Massachusetts, 1990.
- Bielecki, A., Sur certaines conditions necessaires et suffisantes pour l’unicite des solutions des systemes d’equations differentielles ordinaires et des equations au paratingent, Ann. Univ. Mariae Curie-Skłodowska Sect. A 2 (1948), 49-106.
- Bouligand, G., Introduction a la geometrie infinitesimale directe, Vuibert, Paris, 1932.
- Choquet, G., Outils topologiques et metriques de l’analyse mathematique, Centre de Documentation Univ., Course redige par C. Mayer, Paris, 1969.
- Fedor, M., Szyszkowska, J., Darboux properties of the paratingent, Ann. Univ. Mariae Curie-Skłodowska Sect. A 62 (2008), 67-74.
- Mirica, S., The contingent and the paratingent as generalized derivatives for vectorvalued and set-valued mappings, Nonlinear Anal. 6 (1982), 1335-1368.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.