On compactness and connectedness of the paratingent

Wojciech Zygmunt

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2016)

  • Volume: 70, Issue: 2
  • ISSN: 0365-1029

Abstract

top
In this note we shall prove that for a continuous function ϕ : Δ n , where Δ ,  the paratingent of ϕ at a Δ is a non-empty and compact set in n if and only if ϕ satisfies Lipschitz condition in a neighbourhood of a . Moreover, in this case the paratingent is a connected set.

How to cite

top

Wojciech Zygmunt. "On compactness and connectedness of the paratingent." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 70.2 (2016): null. <http://eudml.org/doc/289745>.

@article{WojciechZygmunt2016,
abstract = {In this note we shall prove that for a continuous function $\varphi : \Delta \rightarrow \mathbb \{R\}^n$, where $\Delta \subset \mathbb \{R\}$,  the paratingent of $\varphi $ at $a\in \Delta $ is a non-empty and compact set in $\mathbb \{R\}^n$ if and only if $\varphi $ satisfies Lipschitz condition in a neighbourhood of $a$. Moreover, in this case the paratingent is a connected set.},
author = {Wojciech Zygmunt},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {},
language = {eng},
number = {2},
pages = {null},
title = {On compactness and connectedness of the paratingent},
url = {http://eudml.org/doc/289745},
volume = {70},
year = {2016},
}

TY - JOUR
AU - Wojciech Zygmunt
TI - On compactness and connectedness of the paratingent
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2016
VL - 70
IS - 2
SP - null
AB - In this note we shall prove that for a continuous function $\varphi : \Delta \rightarrow \mathbb {R}^n$, where $\Delta \subset \mathbb {R}$,  the paratingent of $\varphi $ at $a\in \Delta $ is a non-empty and compact set in $\mathbb {R}^n$ if and only if $\varphi $ satisfies Lipschitz condition in a neighbourhood of $a$. Moreover, in this case the paratingent is a connected set.
LA - eng
KW -
UR - http://eudml.org/doc/289745
ER -

References

top
  1. Aubin, J. P., Frankowska, H., Set-Valued Analysis, Birkhauser, Boston, Massachusetts, 1990. 
  2. Bielecki, A., Sur certaines conditions necessaires et suffisantes pour l’unicite des solutions des systemes d’equations differentielles ordinaires et des equations au paratingent, Ann. Univ. Mariae Curie-Skłodowska Sect. A 2 (1948), 49-106. 
  3. Bouligand, G., Introduction a la geometrie infinitesimale directe, Vuibert, Paris, 1932. 
  4. Choquet, G., Outils topologiques et metriques de l’analyse mathematique, Centre de Documentation Univ., Course redige par C. Mayer, Paris, 1969. 
  5. Fedor, M., Szyszkowska, J., Darboux properties of the paratingent, Ann. Univ. Mariae Curie-Skłodowska Sect. A 62 (2008), 67-74. 
  6. Mirica, S., The contingent and the paratingent as generalized derivatives for vectorvalued and set-valued mappings, Nonlinear Anal. 6 (1982), 1335-1368. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.