On subordination for classes of non-Bazilevic type

Rabha W. Ibrahim; Maslina Darus; Nikola Tuneski

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2010)

  • Volume: 54, Issue: 2
  • ISSN: 0365-1029

Abstract

top
We give some subordination results for new classes of normalized analytic functions containing differential operator of non-Bazilevic type in the open unit disk. By using Jack’s lemma, sufficient conditions for this type of operator are also discussed.

How to cite

top

Rabha W. Ibrahim, Maslina Darus, and Nikola Tuneski. "On subordination for classes of non-Bazilevic type." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 54.2 (2010): null. <http://eudml.org/doc/289752>.

@article{RabhaW2010,
abstract = {We give some subordination results for new classes of normalized analytic functions containing differential operator of non-Bazilevic type in the open unit disk. By using Jack’s lemma, sufficient conditions for this type of operator are also discussed.},
author = {Rabha W. Ibrahim, Maslina Darus, Nikola Tuneski},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Fractional calculus; subordination; non-Bazilevic function; Jack’s lemma},
language = {eng},
number = {2},
pages = {null},
title = {On subordination for classes of non-Bazilevic type},
url = {http://eudml.org/doc/289752},
volume = {54},
year = {2010},
}

TY - JOUR
AU - Rabha W. Ibrahim
AU - Maslina Darus
AU - Nikola Tuneski
TI - On subordination for classes of non-Bazilevic type
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2010
VL - 54
IS - 2
SP - null
AB - We give some subordination results for new classes of normalized analytic functions containing differential operator of non-Bazilevic type in the open unit disk. By using Jack’s lemma, sufficient conditions for this type of operator are also discussed.
LA - eng
KW - Fractional calculus; subordination; non-Bazilevic function; Jack’s lemma
UR - http://eudml.org/doc/289752
ER -

References

top
  1. Darus, M., Ibrahim, R. W., Coefficient inequalities for a new class of univalent functions, Lobachevskii J. Math. 29(4) (2008), 221-229. 
  2. Ibrahim, R. W., Darus, M., On subordination theorems for new classes of normalize analytic functions, Appl. Math. Sci. (Ruse) 2(56) (2008), 2785-2794. 
  3. Ibrahim, R. W., Darus, M., Subordination for new classes of non-Bazilevic type, UNRI-UKM Symposium, KE-4 (2008). 
  4. Ibrahim, R. W., Darus, M., Differential subordination results for new classes of the family ( Φ , Ψ ) , JIPAM. J. Ineq. Pure Appl. Math. 10(1) (2009), Art. 8, 9 pp. 
  5. Jack, I. S., Functions starlike and convex of order k, J. London Math. Soc. 3 (1971), 469-474 . 
  6. Miller, S. S., Mocanu, P. T., Differential Subordinantions. Theory and Applications, Monographs and Textbooks in Pure and Applied Mathematics, 225, Marcel Dekker, Inc., New York, 2000. 
  7. Miller, K. S., Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, Inc., New York, 1993. 
  8. Obradovic, M., A class of univalent functions, Hokkaido Math. J. 27(2) (1998), 329-335. 
  9. Raina, R. K., On certain class of analytic functions and applications to fractional calculus operator, Integral Transform. Spec. Funct. 5 (1997), 247-260. 
  10. Raina, R. K., Srivastava, H. M., A certain subclass of analytic functions associated with operators of fractional calculus, Comput. Math. Appl. 32 (1996), 13-19. 
  11. Shanmugam, T. N., Ravichangran, V. and Sivasubramanian, S., Differential sandwich theorems for some subclasses of analytic functions, Austral. J. Math. Anal. Appl. 3(1) (2006), 1-11. 
  12. Srivastava, H. M., Owa, S. (Eds.), Univalent Functions, Fractional Calculus, and Their Applications, Halsted Press, John Wiley and Sons, New York, Chichester, Brisbane, Toronto, 1989. 
  13. Srivastava, H. M., Owa, S. (Eds.), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London, Hong Kong, 1992. 
  14. Tuneski, N., Darus, M., Fekete-Szego functional for non-Bazilevic functions, Acta Math. Acad. Paedagog. Nyhazi. (N.S.) 18(2) (2002), 63-65. 
  15. Wang, Z., Gao, C. and Liao, M., On certain generalized class of non-Bazilevic functions, Acta Math. Acad. Paedagog. Nyhazi. (N.S.) 21(2) (2005), 147-154. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.