Mobius invariant Besov spaces on the unit ball of n

Małgorzata Michalska; Maria Nowak; Paweł Sobolewski

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2011)

  • Volume: 65, Issue: 2
  • ISSN: 0365-1029

Abstract

top
We give new characterizations of the analytic Besov spaces B p on the unit ball 𝔹 of n in terms of oscillations and integral means over some Euclidian balls contained in 𝔹 .

How to cite

top

Małgorzata Michalska, Maria Nowak, and Paweł Sobolewski. "Mobius invariant Besov spaces on the unit ball of $\mathbb {C}^n$." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 65.2 (2011): null. <http://eudml.org/doc/289757>.

@article{MałgorzataMichalska2011,
abstract = {We give new characterizations of the analytic Besov spaces $B_p$ on the unit ball $\mathbb \{B\}$ of $\mathbb \{C\}^n$ in terms of oscillations and integral means over some Euclidian balls contained in $\mathbb \{B\}$.},
author = {Małgorzata Michalska, Maria Nowak, Paweł Sobolewski},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Besov spaces; conformal Mobius transformation},
language = {eng},
number = {2},
pages = {null},
title = {Mobius invariant Besov spaces on the unit ball of $\mathbb \{C\}^n$},
url = {http://eudml.org/doc/289757},
volume = {65},
year = {2011},
}

TY - JOUR
AU - Małgorzata Michalska
AU - Maria Nowak
AU - Paweł Sobolewski
TI - Mobius invariant Besov spaces on the unit ball of $\mathbb {C}^n$
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2011
VL - 65
IS - 2
SP - null
AB - We give new characterizations of the analytic Besov spaces $B_p$ on the unit ball $\mathbb {B}$ of $\mathbb {C}^n$ in terms of oscillations and integral means over some Euclidian balls contained in $\mathbb {B}$.
LA - eng
KW - Besov spaces; conformal Mobius transformation
UR - http://eudml.org/doc/289757
ER -

References

top
  1. Alfors, L., Mobius Transformations in Several Dimensions, Ordway Professorship Lectures in Mathematics. University of Minnesota, School of Mathematics, Minneapolis, Minn., 1981. 
  2. Duren, P., Weir, R., The pseudohyperbolic metric and Bergman spaces in the ball, Trans. Amer. Math. Soc. 359 (2007), 63-76. 
  3. Hahn, K. T., Youssfi, E. H., Mobius invariant Besov p-spaces and Hankel operators in the Bergman space on the unit ball of n , Complex Variables Theory Appl. 17 (1991), 89-104. 
  4. Li, S., Wulan, H., Besov space on the unit ball of n , Indian J. Math. 48 (2006), no. 2, 177-186. 
  5. Li, S., Wulan, H., Zhao, R. and Zhu, K., A characterization of Bergman spaces on the unit ball of n , Glasgow Math. J. 51 (2009), 315-330. 
  6. Holland, F., Walsh, D., Criteria for membership of Bloch space and its subspace BMOA, Math. Ann. 273 (1986), no. 2, 317-335. 
  7. Li, S., Wulan, H. and Zhu, K., A characterization of Bergman spaces on the unit ball of n , II, Canadian Math. Bull., to appear. 
  8. Nowak, M., Bloch space and Mobius invariant Besov spaces on the unit ball of n , Complex Variables Theory Appl. 44 (2001), 1-12. 
  9. Ouyang, C., Yang, W. and Zhao, R., Mobius invariant Q p spaces associated with the Green’s function on the unit ball of n , Pacific J. Math. 182 (1998), no. 1, 69-99. 
  10. Pavlovic, M., A formula for the Bloch norm of a C 1 -function on the unit ball of n
  11. Czechoslovak Math. J. 58(133) (2008), no. 4, 1039-1043. 
  12. Pavlovic, M., On the Holland-Walsh characterization of Bloch functions, Proc. Edinb. Math. Soc. 51 (2008), 439-441. 
  13. Ren, G., Tu, C., Bloch space in the unit ball of n , Proc. Amer. Math. Soc. 133 (2004), no. 3, 719-726. 
  14. Rudin, W., Function Theory in the Unit Ball of n , Springer-Verlag, New York, 1980. 
  15. Stroethoff, K., The Bloch space and Besov space of analytic functions, Bull. Austral. Math. Soc. 54 (1996), 211-219. 
  16. Ullrich, D., Radial limits of M-subharmonic functions, Trans. Amer. Math. Soc. 292 (1985), no. 2, 501-518. 
  17. Zhu, K., Spaces of Holomorphic Functions in the Unit Ball, Springer-Verlag, New York, 2005. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.