Mobius invariant Besov spaces on the unit ball of
Małgorzata Michalska; Maria Nowak; Paweł Sobolewski
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2011)
- Volume: 65, Issue: 2
- ISSN: 0365-1029
Access Full Article
topAbstract
topHow to cite
topMałgorzata Michalska, Maria Nowak, and Paweł Sobolewski. "Mobius invariant Besov spaces on the unit ball of $\mathbb {C}^n$." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 65.2 (2011): null. <http://eudml.org/doc/289757>.
@article{MałgorzataMichalska2011,
abstract = {We give new characterizations of the analytic Besov spaces $B_p$ on the unit ball $\mathbb \{B\}$ of $\mathbb \{C\}^n$ in terms of oscillations and integral means over some Euclidian balls contained in $\mathbb \{B\}$.},
author = {Małgorzata Michalska, Maria Nowak, Paweł Sobolewski},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Besov spaces; conformal Mobius transformation},
language = {eng},
number = {2},
pages = {null},
title = {Mobius invariant Besov spaces on the unit ball of $\mathbb \{C\}^n$},
url = {http://eudml.org/doc/289757},
volume = {65},
year = {2011},
}
TY - JOUR
AU - Małgorzata Michalska
AU - Maria Nowak
AU - Paweł Sobolewski
TI - Mobius invariant Besov spaces on the unit ball of $\mathbb {C}^n$
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2011
VL - 65
IS - 2
SP - null
AB - We give new characterizations of the analytic Besov spaces $B_p$ on the unit ball $\mathbb {B}$ of $\mathbb {C}^n$ in terms of oscillations and integral means over some Euclidian balls contained in $\mathbb {B}$.
LA - eng
KW - Besov spaces; conformal Mobius transformation
UR - http://eudml.org/doc/289757
ER -
References
top- Alfors, L., Mobius Transformations in Several Dimensions, Ordway Professorship Lectures in Mathematics. University of Minnesota, School of Mathematics, Minneapolis, Minn., 1981.
- Duren, P., Weir, R., The pseudohyperbolic metric and Bergman spaces in the ball, Trans. Amer. Math. Soc. 359 (2007), 63-76.
- Hahn, K. T., Youssfi, E. H., Mobius invariant Besov p-spaces and Hankel operators in the Bergman space on the unit ball of , Complex Variables Theory Appl. 17 (1991), 89-104.
- Li, S., Wulan, H., Besov space on the unit ball of , Indian J. Math. 48 (2006), no. 2, 177-186.
- Li, S., Wulan, H., Zhao, R. and Zhu, K., A characterization of Bergman spaces on the unit ball of , Glasgow Math. J. 51 (2009), 315-330.
- Holland, F., Walsh, D., Criteria for membership of Bloch space and its subspace BMOA, Math. Ann. 273 (1986), no. 2, 317-335.
- Li, S., Wulan, H. and Zhu, K., A characterization of Bergman spaces on the unit ball of , II, Canadian Math. Bull., to appear.
- Nowak, M., Bloch space and Mobius invariant Besov spaces on the unit ball of , Complex Variables Theory Appl. 44 (2001), 1-12.
- Ouyang, C., Yang, W. and Zhao, R., Mobius invariant spaces associated with the Green’s function on the unit ball of , Pacific J. Math. 182 (1998), no. 1, 69-99.
- Pavlovic, M., A formula for the Bloch norm of a -function on the unit ball of ,
- Czechoslovak Math. J. 58(133) (2008), no. 4, 1039-1043.
- Pavlovic, M., On the Holland-Walsh characterization of Bloch functions, Proc. Edinb. Math. Soc. 51 (2008), 439-441.
- Ren, G., Tu, C., Bloch space in the unit ball of , Proc. Amer. Math. Soc. 133 (2004), no. 3, 719-726.
- Rudin, W., Function Theory in the Unit Ball of , Springer-Verlag, New York, 1980.
- Stroethoff, K., The Bloch space and Besov space of analytic functions, Bull. Austral. Math. Soc. 54 (1996), 211-219.
- Ullrich, D., Radial limits of M-subharmonic functions, Trans. Amer. Math. Soc. 292 (1985), no. 2, 501-518.
- Zhu, K., Spaces of Holomorphic Functions in the Unit Ball, Springer-Verlag, New York, 2005.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.