On limiting values of Cauchy type integral in a harmonic algebra with two-dimensional radical

S. A. Plaksa; V. S. Shpakivskyi

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2013)

  • Volume: 67, Issue: 1
  • ISSN: 0365-1029

Abstract

top
We consider a certain analog of Cauchy type integral taking values in a three-dimensional harmonic algebra with two-dimensional radical. We establish sufficient conditions for an existence of limiting values of this integral on the curve of integration.

How to cite

top

S. A. Plaksa, and V. S. Shpakivskyi. "On limiting values of Cauchy type integral in a harmonic algebra with two-dimensional radical." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 67.1 (2013): null. <http://eudml.org/doc/289758>.

@article{S2013,
abstract = {We consider a certain analog of Cauchy type integral taking values in a three-dimensional harmonic algebra with two-dimensional radical. We establish sufficient conditions for an existence of limiting values of this integral on the curve of integration.},
author = {S. A. Plaksa, V. S. Shpakivskyi},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Three-dimensional harmonic algebra; Cauchy type integral; limiting values; closed Jordan rectifiable curve.},
language = {eng},
number = {1},
pages = {null},
title = {On limiting values of Cauchy type integral in a harmonic algebra with two-dimensional radical},
url = {http://eudml.org/doc/289758},
volume = {67},
year = {2013},
}

TY - JOUR
AU - S. A. Plaksa
AU - V. S. Shpakivskyi
TI - On limiting values of Cauchy type integral in a harmonic algebra with two-dimensional radical
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2013
VL - 67
IS - 1
SP - null
AB - We consider a certain analog of Cauchy type integral taking values in a three-dimensional harmonic algebra with two-dimensional radical. We establish sufficient conditions for an existence of limiting values of this integral on the curve of integration.
LA - eng
KW - Three-dimensional harmonic algebra; Cauchy type integral; limiting values; closed Jordan rectifiable curve.
UR - http://eudml.org/doc/289758
ER -

References

top
  1. Davydov, N. A., The continuity of an integral of Cauchy type in a closed domain, Dokl. Akad. Nauk SSSR 64, no. 6 (1949), 759–762 (Russian). 
  2. Salaev, V. V., Direct and inverse estimates for a singular Cauchy integral along a closed curve, Mat. Zametki 19, no. 3 (1976), 365–380 (Russian). 
  3. Gerus, O. F., Finite-dimensional smoothness of Cauchy-type integrals, Ukrainian Math. J. 29, no. 5 (1977), 490–493. 
  4. Gerus, O. F., Some estimates of moduli of smoothness of integrals of the Cauchy type, Ukrainian Math. J. 30, no. 5 (1978), 594–601. 
  5. Ketchum, P. W., Analytic functions of hypercomplex variables, Trans. Amer. Math. Soc. 30 (1928), 641–667. 
  6. Kunz, K. S., Application of an algebraic technique to the solution of Laplace’s equation in three dimensions, SIAM J. Appl. Math. 21, no. 3 (1971), 425–441. 
  7. Mel’nichenko, I. P., The representation of harmonic mappings by monogenic functions, Ukrainian Math. J. 27, no. 5 (1975), 499–505. 
  8. Mel’nichenko, I. P., Algebras of functionally invariant solutions of the threedimensional Laplace equation, Ukrainian Math. J. 55, no. 9 (2003), 1551–1559. 
  9. Mel’nichenko, I. P., Plaksa, S. A., Commutative algebras and spatial potential fields, Inst. Math. NAS Ukraine, Kiev, 2008 (Russian). 
  10. Plaksa, S. A., Riemann boundary-value problem with infinite index of logarithmic order on a spiral contour. I, Ukrainian Math. J. 42, no. 11 (1990), 1509–1517. 
  11. Shpakivskyi, V. S., Plaksa, S. A., Integral theorems and a Cauchy formula in a commutative three-dimensional harmonic algebra, Bull. Soc. Sci. Lett. Łódz Ser. Rech. Deform. 60 (2010), 47–54. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.