The Fekete–Szegö problem for a class of analytic functions defined by Carlson–Shaffer operator

Om P. Ahuja; Halit Orhan

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2014)

  • Volume: 68, Issue: 1
  • ISSN: 0365-1029

Abstract

top
In the present investigation we solve Fekete-Szegö problem for the generalized linear differential operator. In particular, our theorems contain corresponding results for various subclasses of strongly starlike and strongly convex functions. In the present investigation we solve Fekete-Szegö problem for the generalized linear differential operator. In particular, our theorems contain corresponding results for various subclasses of strongly starlike and strongly convex functions.

How to cite

top

Om P. Ahuja, and Halit Orhan. "The Fekete–Szegö problem for a class of analytic functions defined by Carlson–Shaffer operator." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 68.1 (2014): null. <http://eudml.org/doc/289761>.

@article{OmP2014,
abstract = {In the present investigation we solve Fekete-Szegö problem for the generalized linear differential operator. In particular, our theorems contain corresponding results for various subclasses of strongly starlike and strongly convex functions. In the present investigation we solve Fekete-Szegö problem for the generalized linear differential operator. In particular, our theorems contain corresponding results for various subclasses of strongly starlike and strongly convex functions.},
author = {Om P. Ahuja, Halit Orhan},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
language = {eng},
number = {1},
pages = {null},
title = {The Fekete–Szegö problem for a class of analytic functions defined by Carlson–Shaffer operator},
url = {http://eudml.org/doc/289761},
volume = {68},
year = {2014},
}

TY - JOUR
AU - Om P. Ahuja
AU - Halit Orhan
TI - The Fekete–Szegö problem for a class of analytic functions defined by Carlson–Shaffer operator
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2014
VL - 68
IS - 1
SP - null
AB - In the present investigation we solve Fekete-Szegö problem for the generalized linear differential operator. In particular, our theorems contain corresponding results for various subclasses of strongly starlike and strongly convex functions. In the present investigation we solve Fekete-Szegö problem for the generalized linear differential operator. In particular, our theorems contain corresponding results for various subclasses of strongly starlike and strongly convex functions.
LA - eng
UR - http://eudml.org/doc/289761
ER -

References

top
  1. Abdel-Gawad, H. R., Thomas, D. K., Fekete-Szegö problem for strongly close-toconvex function, Proc. Amer. Math. Soc. 114 (2) (1992), 345-349. 
  2. Al-Oboudi, F. M., On univalent functions defined by a generalized Sălăgean operator, Int. J. Math. Math. Sci., no. 25–28 (2004), 1429-1436. 
  3. Brannan D. A., Kirwan, W. E., On some classes of bounded univalent functions, J. London Math. Soc. 2 (1) (1969), 431-443. 
  4. Carlson, B. C., Shaffer, D. B., Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15 (1984), 737-745. 
  5. Çağlar, M., Deniz, E., Orhan, H., Coefficient bounds for a subclass of starlike functions of complex order, Appl. Math. Comput. 218 (2011), 693-698. 
  6. Darus, M., Akbarally, A., Coefficient estimates for Ruscheweyh derivatives, Int. J. Math. Math. Sci. 36 (2004), 1937-1942. 
  7. Deniz, E., Orhan, H., The Fekete-Szegö problem for a generalized subclass of analytic functions, Kyungpook Math. J. 50 (2010), 37-47. 
  8. Deniz, E., Çağlar, M., Orhan, H., The Fekete-Szegö problem for a class of analytic functions defined by Dziok-Srivastava operator, Kodai Math. J. 35 (2012), 439-462. 
  9. Dziok, J., Classes of functions defined by certain differential-integral operators, J. Comput. Appl. Math. 105 (1999), 245-255. 
  10. Fekete, M., Szegö, G., Eine Bermerkung uber ungerade schlichte funktionen, J. London Math. Soc. 8 (1933), 85-89. 
  11. Frasin, B., Darus, M., On Fekete–Szegö problem using Hadamard product, Int. J. Math. Math. Sci. 12 (2003), 1289-1295. 
  12. Goel, R. M., Mehrok, B. S., A coefficient inequality for certain classes of analytic functions, Tamkang J. Math. 22 (2) (1995), 153-163. 
  13. Koeghe, F. R., Merkes, E. P., A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8-12. 
  14. Lashin, A. Y., Starlike and convex functions of complex order involving a certain linear operator, Indian J. Pure Appl. Math. 34 (7) (2003), 1101-1108. 
  15. Orhan, H., Kamali, M., On the Fekete–Szegö problem, Appl. Math. Comput. 144 (2003), 181-186. 
  16. Orhan, H., Raducanu, D., Fekete–Szegö problem for strongly starlike functions associated with generalized hypergeometric functions, Math. Comput. Modelling 50 (2009), 430-438. 
  17. Orhan, H., Yağmur, N., Deniz, E., Coefficient inequality for a generalized subclass of analytic functions, Bull. Transilv. Univ. Braşov Ser. III 4(53), no. 1 (2011), 51-57. 
  18. Orhan, H., Deniz, E., Çağlar, M., Fekete–Szegö problem for certain subclasses of analytic functions, Demonstratio Math. 45, no. 4 (2012), 835-846. 
  19. Pommerenke, Ch., Univalent Functions, Vandenhoeck and Ruprecht, Gottingen, 1975. 
  20. Răducanu, D., Orhan, H., Subclasses of analytic functions defined by a generalized differential operator, Int. J. Math. Anal. (Ruse) 4 (1) (2010), 1-15. 
  21. Ravichandran, V., Kumar, S. S., On a class of analytic functions involving Carlson-Shaffer linear operator, Riv. Math. Univ. Parma 7 (3) (2004), 35-48. 
  22. Ruscheweyh, S., New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109-115. 
  23. Sălăgean, G. S., Subclasses of univalent functions, Complex analysis - fifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981), Lecture Notes in Math. 1013, Springer, Berlin, 1983, 362-372. 
  24. Srivastava, H. M., Owa, S. (Eds.), Current Topics in Analytic Fuction Theory, World Scientific Publishing, New Jersey, 1992. 
  25. Srivastava, H. M., Mishra, A. K., Das, M. K., The Fekete-Szegö problem for a subclass of close-to-convex functions, Complex Variable Theory Appl. 44 (2) (2001), 145-163. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.