Inequalities concerning polar derivative of polynomials
Arty Ahuja; K. K. Dewan; Sunil Hans
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2011)
- Volume: 65, Issue: 1
- ISSN: 0365-1029
Access Full Article
topAbstract
topHow to cite
topArty Ahuja, K. K. Dewan, and Sunil Hans. "Inequalities concerning polar derivative of polynomials." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 65.1 (2011): null. <http://eudml.org/doc/289768>.
@article{ArtyAhuja2011,
abstract = {In this paper we obtain certain results for the polar derivative of a polynomial $p(z) = c_nz^n +\sum _\{j=\mu \}^n c_\{n-j\}z^\{n-j\}$, $1\le \mu \le n$, having all its zeros on $|z| = k$, $k\le 1$, which generalizes the results due to Dewan and Mir, Dewan and Hans. We also obtain certain new inequalities concerning the maximum modulus of a polynomial with restricted zeros. [Editor’s note: There are flaws in the paper, see M. A. Qazi, Remarks on some recent results about polynomials with restricted zeros, Ann. Univ. Mariae Curie-Skłodowska Sect. A 67 (2), (2013), 59-64 ]},
author = {Arty Ahuja, K. K. Dewan, Sunil Hans},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Polynomials; maximum modulus; inequalities in the complex domain; polar derivative},
language = {eng},
number = {1},
pages = {null},
title = {Inequalities concerning polar derivative of polynomials},
url = {http://eudml.org/doc/289768},
volume = {65},
year = {2011},
}
TY - JOUR
AU - Arty Ahuja
AU - K. K. Dewan
AU - Sunil Hans
TI - Inequalities concerning polar derivative of polynomials
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2011
VL - 65
IS - 1
SP - null
AB - In this paper we obtain certain results for the polar derivative of a polynomial $p(z) = c_nz^n +\sum _{j=\mu }^n c_{n-j}z^{n-j}$, $1\le \mu \le n$, having all its zeros on $|z| = k$, $k\le 1$, which generalizes the results due to Dewan and Mir, Dewan and Hans. We also obtain certain new inequalities concerning the maximum modulus of a polynomial with restricted zeros. [Editor’s note: There are flaws in the paper, see M. A. Qazi, Remarks on some recent results about polynomials with restricted zeros, Ann. Univ. Mariae Curie-Skłodowska Sect. A 67 (2), (2013), 59-64 ]
LA - eng
KW - Polynomials; maximum modulus; inequalities in the complex domain; polar derivative
UR - http://eudml.org/doc/289768
ER -
References
top- Bernstein, S., Lecons sur les proprietes extremales et la meilleure approximation desfonctions analytiques d’une variable reele, Gauthier Villars, Paris, 1926 (French).
- Chan, T. N., Malik, M. A., On Erdos-Lax theorem, Proc. Indian Acad. Sci. 92 (3) (1983), 191-193.
- Dewan, K. K., Hans, S., On maximum modulus for the derivative of a polynomial, Ann. Univ. Mariae Curie-Skłodowska Sect. A 63 (2009), 55-62.
- Dewan, K. K., Mir, A., Note on a theorem of S. Bernstein, Southeast Asian Bulletin of Math. 31 (2007), 691-695.
- Govil, N. K., On the theorem of S. Bernstein, J. Math. Phys. Sci. 14 (1980), 183-187.
- Govil, N. K., Rahman, Q. I., Functions of exponential type not vanishing in a half plane and related polynomials, Trans. Amer. Math. Soc. 137 (1969), 501-517.
- Jain, V. K., On polynomials having zeros in closed exterior or interior of a circle, Indian J. Pure Appl. Math. 30 (1999), 153-159.
- Malik, M. A., On the derivative of a polynomial, J. London Math. Soc. 1 (1969), 57-60.
- Mir, A., On extremal properties and location of zeros of polynomials, Ph.D. Thesis submitted to Jamia Millia Islamia, New Delhi, 2002.
- Qazi, M. A., On the maximum modulus of polynomials, Proc. Amer. Math. Soc. 115 (1992), 337-343.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.