On regular local operators on smooth maps

Włodzimierz Mikulski

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2015)

  • Volume: 69, Issue: 2
  • ISSN: 0365-1029

Abstract

top
Let X, Y, Z, W be manifolds and π : Z → X be a surjective submersion. We characterize π-local regular operators A : C∞(X,Y) → C∞(Z,W) in terms of the corresponding maps à : J∞(X,Y) ×XZ → W satisfying the so-called local finite order factorization property.

How to cite

top

Włodzimierz Mikulski. "On regular local operators on smooth maps." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 69.2 (2015): null. <http://eudml.org/doc/289772>.

@article{WłodzimierzMikulski2015,
abstract = {Let X, Y, Z, W be manifolds and π : Z → X be a surjective submersion. We characterize π-local regular operators A : C∞(X,Y) → C∞(Z,W) in terms of the corresponding maps à : J∞(X,Y) ×XZ → W satisfying the so-called local finite order factorization property.},
author = {Włodzimierz Mikulski},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Local regular operator; jet.},
language = {eng},
number = {2},
pages = {null},
title = {On regular local operators on smooth maps},
url = {http://eudml.org/doc/289772},
volume = {69},
year = {2015},
}

TY - JOUR
AU - Włodzimierz Mikulski
TI - On regular local operators on smooth maps
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2015
VL - 69
IS - 2
SP - null
AB - Let X, Y, Z, W be manifolds and π : Z → X be a surjective submersion. We characterize π-local regular operators A : C∞(X,Y) → C∞(Z,W) in terms of the corresponding maps à : J∞(X,Y) ×XZ → W satisfying the so-called local finite order factorization property.
LA - eng
KW - Local regular operator; jet.
UR - http://eudml.org/doc/289772
ER -

References

top
  1. Kolar, I., Michor, P. W., Slovak, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993. 
  2. Slovak, J., Peetre theorem for nonlinear operators, Ann. Global Anal. Geom. 6 (3) (1988), 273-283. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.