On regular local operators on smooth maps
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2015)
- Volume: 69, Issue: 2
- ISSN: 0365-1029
Access Full Article
topAbstract
topHow to cite
topWłodzimierz Mikulski. "On regular local operators on smooth maps." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 69.2 (2015): null. <http://eudml.org/doc/289772>.
@article{WłodzimierzMikulski2015,
abstract = {Let X, Y, Z, W be manifolds and π : Z → X be a surjective submersion. We characterize π-local regular operators A : C∞(X,Y) → C∞(Z,W) in terms of the corresponding maps à : J∞(X,Y) ×XZ → W satisfying the so-called local finite order factorization property.},
author = {Włodzimierz Mikulski},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Local regular operator; jet.},
language = {eng},
number = {2},
pages = {null},
title = {On regular local operators on smooth maps},
url = {http://eudml.org/doc/289772},
volume = {69},
year = {2015},
}
TY - JOUR
AU - Włodzimierz Mikulski
TI - On regular local operators on smooth maps
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2015
VL - 69
IS - 2
SP - null
AB - Let X, Y, Z, W be manifolds and π : Z → X be a surjective submersion. We characterize π-local regular operators A : C∞(X,Y) → C∞(Z,W) in terms of the corresponding maps à : J∞(X,Y) ×XZ → W satisfying the so-called local finite order factorization property.
LA - eng
KW - Local regular operator; jet.
UR - http://eudml.org/doc/289772
ER -
References
top- Kolar, I., Michor, P. W., Slovak, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.
- Slovak, J., Peetre theorem for nonlinear operators, Ann. Global Anal. Geom. 6 (3) (1988), 273-283.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.