Affine invariants of annuli
Waldemar Cieślak; Elzbieta Szczygielska
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2012)
- Volume: 66, Issue: 1
- ISSN: 0365-1029
Access Full Article
topAbstract
topHow to cite
topWaldemar Cieślak, and Elzbieta Szczygielska. "Affine invariants of annuli." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 66.1 (2012): null. <http://eudml.org/doc/289773>.
@article{WaldemarCieślak2012,
abstract = {A family of regular annuli is considered. Affine invariants of annuli are introduced.},
author = {Waldemar Cieślak, Elzbieta Szczygielska},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Invariant; annulus},
language = {eng},
number = {1},
pages = {null},
title = {Affine invariants of annuli},
url = {http://eudml.org/doc/289773},
volume = {66},
year = {2012},
}
TY - JOUR
AU - Waldemar Cieślak
AU - Elzbieta Szczygielska
TI - Affine invariants of annuli
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2012
VL - 66
IS - 1
SP - null
AB - A family of regular annuli is considered. Affine invariants of annuli are introduced.
LA - eng
KW - Invariant; annulus
UR - http://eudml.org/doc/289773
ER -
References
top- Bonnesen, T., Fenchel, W., Theorie der konvexen Korper, Chelsea Publishing Co., New York, 1948.
- Cieślak, W., Miernowski, A. and Mozgawa, W., Isoptics of a closed strictly convex curve, Global differential geometry and global analysis (Berlin, 1990), Lecture Notes in Math., 1481, Springer, Berlin, 1991, 28-35.
- Cieślak, W., Miernowski, A. and Mozgawa, W., Isoptics of a closed strictly convex curve. II, Rend. Sem. Mat. Univ. Padova, 96 (1996), 37-49.
- Santalo, L., Integral geometry and geometric probability, Encyclopedia of Mathematics and its Applications, Vol. 1. Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.