Cartan connection of transversally Finsler foliation

Andrzej Miernowski

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2012)

  • Volume: 66, Issue: 1
  • ISSN: 0365-1029

Abstract

top
The purpose of this paper is to define transversal Cartan connectionof Finsler foliation and to prove its existence and uniqueness.

How to cite

top

Andrzej Miernowski. "Cartan connection of transversally Finsler foliation." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 66.1 (2012): null. <http://eudml.org/doc/289775>.

@article{AndrzejMiernowski2012,
abstract = {The purpose of this paper is to define transversal Cartan connectionof Finsler foliation and to prove its existence and uniqueness.},
author = {Andrzej Miernowski},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Finsler metric; normal bundle; Cartan connection},
language = {eng},
number = {1},
pages = {null},
title = {Cartan connection of transversally Finsler foliation},
url = {http://eudml.org/doc/289775},
volume = {66},
year = {2012},
}

TY - JOUR
AU - Andrzej Miernowski
TI - Cartan connection of transversally Finsler foliation
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2012
VL - 66
IS - 1
SP - null
AB - The purpose of this paper is to define transversal Cartan connectionof Finsler foliation and to prove its existence and uniqueness.
LA - eng
KW - Finsler metric; normal bundle; Cartan connection
UR - http://eudml.org/doc/289775
ER -

References

top
  1. Alvarez Paiva, J. C., Duran, C. E., Isometric submersions of Finsler manifolds, Proc. Amer. Math. Soc. 129 (2001), no. 8, 2409-2417 (electronic). 
  2. Kobayashi, S., Nomizu, K., Foundations of Differential Geometry, vol. I, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1963. 
  3. Miernowski, A., A note on transversally Finsler foliation, Ann. Univ. Mariae Curie-Skłodowska Sect. A 60 (2006), 57-64. 
  4. Miernowski, A., Mozgawa, W., Lift of the Finsler foliation to its normal bundle, Differential Geom. Appl. 24 (2006), no. 2, 209-214. 
  5. Molino, P., Riemannian Foliations, Progress in Mathematics, 73, Birkhauser Boston, Inc., Boston, MA, 1988. 
  6. Spiro, A., Chern’s orthonormal frame bundle of a Finsler space, Houston J. Math. 25 (1999), no. 4, 641-659. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.