Periodic solutions of Euler-Lagrange equations with sublinear potentials in an Orlicz-Sobolev space setting

Sonia Acinas; Fernando Mazzone

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2017)

  • Volume: 71, Issue: 2
  • ISSN: 0365-1029

Abstract

top
In this paper, we obtain existence results of periodic solutions of hamiltonian systems in the Orlicz-Sobolev space W 1 L Φ ( [ 0 , T ] ) . We employ the direct method of calculus of variations and we consider  a potential  function F satisfying the inequality | F ( t , x ) | b 1 ( t ) Φ 0 ' ( | x | ) + b 2 ( t ) , with b 1 , b 2 L 1 and  certain N -functions Φ 0 .

How to cite

top

Sonia Acinas, and Fernando Mazzone. "Periodic solutions of Euler-Lagrange equations with sublinear potentials in an Orlicz-Sobolev space setting." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 71.2 (2017): null. <http://eudml.org/doc/289780>.

@article{SoniaAcinas2017,
abstract = {In this paper, we obtain existence results of periodic solutions of hamiltonian systems in the Orlicz-Sobolev space $W^1L^\Phi ([0,T])$. We employ the direct method of calculus of variations and we consider  a potential  function $F$ satisfying the inequality $|\nabla F(t,x)|\le b_1(t) \Phi _0^\{\prime \}(|x|)+b_2(t)$, with $b_1, b_2\in L^1$ and  certain $N$-functions $\Phi _0$.},
author = {Sonia Acinas, Fernando Mazzone},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Periodic solution; Orlicz-Sobolev spaces; Euler-Lagrange; $N$-function; critical points},
language = {eng},
number = {2},
pages = {null},
title = {Periodic solutions of Euler-Lagrange equations with sublinear potentials in an Orlicz-Sobolev space setting},
url = {http://eudml.org/doc/289780},
volume = {71},
year = {2017},
}

TY - JOUR
AU - Sonia Acinas
AU - Fernando Mazzone
TI - Periodic solutions of Euler-Lagrange equations with sublinear potentials in an Orlicz-Sobolev space setting
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2017
VL - 71
IS - 2
SP - null
AB - In this paper, we obtain existence results of periodic solutions of hamiltonian systems in the Orlicz-Sobolev space $W^1L^\Phi ([0,T])$. We employ the direct method of calculus of variations and we consider  a potential  function $F$ satisfying the inequality $|\nabla F(t,x)|\le b_1(t) \Phi _0^{\prime }(|x|)+b_2(t)$, with $b_1, b_2\in L^1$ and  certain $N$-functions $\Phi _0$.
LA - eng
KW - Periodic solution; Orlicz-Sobolev spaces; Euler-Lagrange; $N$-function; critical points
UR - http://eudml.org/doc/289780
ER -

References

top
  1. Acinas, S., Buri, L., Giubergia, G., Mazzone, F., Schwindt, E., Some existence results on periodic solutions of Euler-Lagrange equations in an Orlicz-Sobolev space setting, Nonlinear Anal. 125 (2015), 681-698. 
  2. Adams, R., Fournier, J., Sobolev Spaces, Elsevier/Academic Press, Amsterdam, 2003. 
  3. Conway, J. B., A Course in Functional Analysis, Springer, New York, 1985. 
  4. Fiorenza, A., Krbec, M., Indices of Orlicz spaces and some applications, Comment. Math. Univ. Carolin. 38 (3) (1997), 433-452. 
  5. Gustavsson, J., Peetre, J., Interpolation of Orlicz spaces, Studia Math. 60 (1) (1977), 33-59, URL http://eudml.org/doc/218150 
  6. Hudzik, H., Maligranda, L., Amemiya norm equals Orlicz norm in general, Indag. Math. (N.S.) 11 (4) (2000), 573-585. 
  7. Krasnoselskiı, M. A., Rutickiı, J. B., Convex Functions and Orlicz Spaces, P. Noordhoff Ltd., Groningen, 1961. 
  8. Maligranda, L., Orlicz Spaces and Interpolation, Vol. 5 of Seminarios de Matematica [Seminars in Mathematics], Universidade Estadual de Campinas, Departamento de Matematica, Campinas, 1989. 
  9. Mawhin, J., Willem, M., Critical Point Theory and Hamiltonian Systems, Springer-Verlag, New York, 1989. 
  10. Rao, M. M., Ren, Z. D., Theory of Orlicz Spaces, Marcel Dekker, Inc., New York, 1991. 
  11. Tang, C.-L., Periodic solutions of non-autonomous second-order systems with γ -quasisubadditive potential, J. Math. Anal. Appl. 189 (3) (1995), 71-675. 
  12. Tang, C.-L., Periodic solutions for nonautonomous second order systems with sublinear nonlinearity, Proc. Amer. Math. Soc. 126 (11) (1998), 3263-3270. 
  13. Tang, C. L.,Wu, X.-P., Periodic solutions for second order systems with not uniformly coercive potential, J. Math. Anal. Appl. 259 (2) (2001), 386-397. 
  14. Tang, X., Zhang, X., Periodic solutions for second-order Hamiltonian systems with a p-Laplacian, Ann. Univ. Mariae Curie-Skłodowska Sect. A 64 (1) (2010), 93-113. 
  15. Tian, Y., Ge, W., Periodic solutions of non-autonomous second-order systems with a p-Laplacian, Nonlinear Anal. 66 (1) (2007), 192-203. 
  16. Wu, X.-P., Tang, C.-L., Periodic solutions of a class of non-autonomous second-order systems, J. Math. Anal. Appl. 236 (2) (1999), 227-235. 
  17. Xu, B., Tang, C.-L., Some existence results on periodic solutions of ordinary p-Laplacian systems, J. Math. Anal. Appl. 333 (2) (2007), 1228-1236. 
  18. Zhao, F., Wu, X., Periodic solutions for a class of non-autonomous second order systems, J. Math. Anal. Appl. 296 (2) (2004), 422-434. 
  19. Zhao, F., Wu, X., Existence and multiplicity of periodic solution for non-autonomous second-order systems with linear nonlinearity, Nonlinear Anal. 60 (2) (2005), 325-335. 
  20. Zhu, K., Analysis on Fock Spaces, Springer, New York, 2012. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.