Periodic solutions of Euler-Lagrange equations with sublinear potentials in an Orlicz-Sobolev space setting
Sonia Acinas; Fernando Mazzone
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2017)
- Volume: 71, Issue: 2
- ISSN: 0365-1029
Access Full Article
topAbstract
topHow to cite
topSonia Acinas, and Fernando Mazzone. "Periodic solutions of Euler-Lagrange equations with sublinear potentials in an Orlicz-Sobolev space setting." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 71.2 (2017): null. <http://eudml.org/doc/289780>.
@article{SoniaAcinas2017,
abstract = {In this paper, we obtain existence results of periodic solutions of hamiltonian systems in the Orlicz-Sobolev space $W^1L^\Phi ([0,T])$. We employ the direct method of calculus of variations and we consider a potential function $F$ satisfying the inequality $|\nabla F(t,x)|\le b_1(t) \Phi _0^\{\prime \}(|x|)+b_2(t)$, with $b_1, b_2\in L^1$ and certain $N$-functions $\Phi _0$.},
author = {Sonia Acinas, Fernando Mazzone},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Periodic solution; Orlicz-Sobolev spaces; Euler-Lagrange; $N$-function; critical points},
language = {eng},
number = {2},
pages = {null},
title = {Periodic solutions of Euler-Lagrange equations with sublinear potentials in an Orlicz-Sobolev space setting},
url = {http://eudml.org/doc/289780},
volume = {71},
year = {2017},
}
TY - JOUR
AU - Sonia Acinas
AU - Fernando Mazzone
TI - Periodic solutions of Euler-Lagrange equations with sublinear potentials in an Orlicz-Sobolev space setting
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2017
VL - 71
IS - 2
SP - null
AB - In this paper, we obtain existence results of periodic solutions of hamiltonian systems in the Orlicz-Sobolev space $W^1L^\Phi ([0,T])$. We employ the direct method of calculus of variations and we consider a potential function $F$ satisfying the inequality $|\nabla F(t,x)|\le b_1(t) \Phi _0^{\prime }(|x|)+b_2(t)$, with $b_1, b_2\in L^1$ and certain $N$-functions $\Phi _0$.
LA - eng
KW - Periodic solution; Orlicz-Sobolev spaces; Euler-Lagrange; $N$-function; critical points
UR - http://eudml.org/doc/289780
ER -
References
top- Acinas, S., Buri, L., Giubergia, G., Mazzone, F., Schwindt, E., Some existence results on periodic solutions of Euler-Lagrange equations in an Orlicz-Sobolev space setting, Nonlinear Anal. 125 (2015), 681-698.
- Adams, R., Fournier, J., Sobolev Spaces, Elsevier/Academic Press, Amsterdam, 2003.
- Conway, J. B., A Course in Functional Analysis, Springer, New York, 1985.
- Fiorenza, A., Krbec, M., Indices of Orlicz spaces and some applications, Comment. Math. Univ. Carolin. 38 (3) (1997), 433-452.
- Gustavsson, J., Peetre, J., Interpolation of Orlicz spaces, Studia Math. 60 (1) (1977), 33-59, URL http://eudml.org/doc/218150
- Hudzik, H., Maligranda, L., Amemiya norm equals Orlicz norm in general, Indag. Math. (N.S.) 11 (4) (2000), 573-585.
- Krasnoselskiı, M. A., Rutickiı, J. B., Convex Functions and Orlicz Spaces, P. Noordhoff Ltd., Groningen, 1961.
- Maligranda, L., Orlicz Spaces and Interpolation, Vol. 5 of Seminarios de Matematica [Seminars in Mathematics], Universidade Estadual de Campinas, Departamento de Matematica, Campinas, 1989.
- Mawhin, J., Willem, M., Critical Point Theory and Hamiltonian Systems, Springer-Verlag, New York, 1989.
- Rao, M. M., Ren, Z. D., Theory of Orlicz Spaces, Marcel Dekker, Inc., New York, 1991.
- Tang, C.-L., Periodic solutions of non-autonomous second-order systems with -quasisubadditive potential, J. Math. Anal. Appl. 189 (3) (1995), 71-675.
- Tang, C.-L., Periodic solutions for nonautonomous second order systems with sublinear nonlinearity, Proc. Amer. Math. Soc. 126 (11) (1998), 3263-3270.
- Tang, C. L.,Wu, X.-P., Periodic solutions for second order systems with not uniformly coercive potential, J. Math. Anal. Appl. 259 (2) (2001), 386-397.
- Tang, X., Zhang, X., Periodic solutions for second-order Hamiltonian systems with a p-Laplacian, Ann. Univ. Mariae Curie-Skłodowska Sect. A 64 (1) (2010), 93-113.
- Tian, Y., Ge, W., Periodic solutions of non-autonomous second-order systems with a p-Laplacian, Nonlinear Anal. 66 (1) (2007), 192-203.
- Wu, X.-P., Tang, C.-L., Periodic solutions of a class of non-autonomous second-order systems, J. Math. Anal. Appl. 236 (2) (1999), 227-235.
- Xu, B., Tang, C.-L., Some existence results on periodic solutions of ordinary p-Laplacian systems, J. Math. Anal. Appl. 333 (2) (2007), 1228-1236.
- Zhao, F., Wu, X., Periodic solutions for a class of non-autonomous second order systems, J. Math. Anal. Appl. 296 (2) (2004), 422-434.
- Zhao, F., Wu, X., Existence and multiplicity of periodic solution for non-autonomous second-order systems with linear nonlinearity, Nonlinear Anal. 60 (2) (2005), 325-335.
- Zhu, K., Analysis on Fock Spaces, Springer, New York, 2012.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.