Third Hankel determinant for starlike and convex functions with respect to symmetric points
D. Vamshee Krishna; B. Venkateswarlu; T. RamReddy
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2016)
- Volume: 70, Issue: 1
- ISSN: 0365-1029
Access Full Article
topAbstract
topHow to cite
topD. Vamshee Krishna, B. Venkateswarlu, and T. RamReddy. "Third Hankel determinant for starlike and convex functions with respect to symmetric points." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 70.1 (2016): null. <http://eudml.org/doc/289783>.
@article{D2016,
abstract = {The objective of this paper is to obtain best possible upper bound to the $H_\{3\}(1)$ Hankel determinant for starlike and convex functions with respect to symmetric points, using Toeplitz determinants.},
author = {D. Vamshee Krishna, B. Venkateswarlu, T. RamReddy},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Analytic function; starlike and convex functions with respect to symmetric points; upper bound; Hankel determinant; convolution; positive real function; Toeplitz determinants},
language = {eng},
number = {1},
pages = {null},
title = {Third Hankel determinant for starlike and convex functions with respect to symmetric points},
url = {http://eudml.org/doc/289783},
volume = {70},
year = {2016},
}
TY - JOUR
AU - D. Vamshee Krishna
AU - B. Venkateswarlu
AU - T. RamReddy
TI - Third Hankel determinant for starlike and convex functions with respect to symmetric points
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2016
VL - 70
IS - 1
SP - null
AB - The objective of this paper is to obtain best possible upper bound to the $H_{3}(1)$ Hankel determinant for starlike and convex functions with respect to symmetric points, using Toeplitz determinants.
LA - eng
KW - Analytic function; starlike and convex functions with respect to symmetric points; upper bound; Hankel determinant; convolution; positive real function; Toeplitz determinants
UR - http://eudml.org/doc/289783
ER -
References
top- Ali, R. M., Coefficients of the inverse of strongly starlike functions, Bull. Malays. Math. Sci. Soc. (second series) 26 (1) (2003), 63-71.
- Babalola, K. O., On Hankel determinant for some classes of univalent functions, Inequality Theory and Applications 6 (2010), 1-7.
- Das, R. N., Singh, P., On subclass of schlicht mappings, Indian J. Pure and Appl. Math. 8 (1977), 864-872.
- Duren, P. L., Univalent Functions, Springer, New York, 1983.
- Grenander, U., Szego, G., Toeplitz Forms and Their Applications, 2nd ed., Chelsea Publishing Co., New York, 1984.
- Janteng, A., Halim, S. A., Darus, M., Hankel determinant for starlike and convex functions, Int. J. Math. Anal. (Ruse) 1 (13) (2007), 619-625.
- Libera, R. J., Złotkiewicz, E. J., Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc. 87 (1983), 251-257.
- Pommerenke, Ch., Univalent Functions, Vandenhoeck and Ruprecht, Gottingen, 1975.
- Pommerenke, Ch., On the coefficients and Hankel determinants of univalent functions, J. Lond. Math. Soc. 41 (1966), 111-122.
- Prithvipal Singh , A study of some subclasses of analytic functions in the unit disc, Ph.D. Thesis (1979), I.I.T. Kanpur.
- Raja, M., Malik, S. N., Upper bound of third Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli, J. Inq. Appl. (2013), vol. 2013.
- RamReddy, T., A study of certain subclasses of univalent analytic functions, Ph.D. Thesis (1983), I.I.T. Kanpur.
- RamReddy, T., Vamshee Krishna, D., Hankel determinant for starlike and convex functions with respect to symmetric points, J. Ind. Math. Soc. (N. S.) 79 (1-4) (2012), 161-171.
- Ratanchand, Some aspects of functions analytic in the unit disc, Ph.D. Thesis (1978), I.I.T. Kanpur.
- Sakaguchi, K., On a certain univalent mapping, J. Math. Soc. Japan 11 (1959), 72-75.
- Simon, B., Orthogonal Polynomials on the Unit Circle, Part 1. Classical Theory, American Mathematical Society, Providence (RI), 2005.
- Vamshee Krishna, D., Venkateswarlu, B., RamReddy, T., Third Hankel determinant for certain subclass of p-valent functions, Complex Var. and Elliptic Eqns. 60 (9) (2015), 1301-1307.
- Vamshee Krishna, D., RamReddy, T., Coefficient inequality for certain p-valent analytic functions, Rocky Mountain J. Math. 44 (6) (2014), 941-1959.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.