Third Hankel determinant for starlike and convex functions with respect to symmetric points

D. Vamshee Krishna; B. Venkateswarlu; T. RamReddy

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2016)

  • Volume: 70, Issue: 1
  • ISSN: 0365-1029

Abstract

top
The objective of this paper is to obtain best possible upper bound to the H 3 ( 1 )   Hankel determinant for starlike and convex functions with respect to symmetric points, using Toeplitz determinants.

How to cite

top

D. Vamshee Krishna, B. Venkateswarlu, and T. RamReddy. "Third Hankel determinant for starlike and convex functions with respect to symmetric points." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 70.1 (2016): null. <http://eudml.org/doc/289783>.

@article{D2016,
abstract = {The objective of this paper is to obtain best possible upper bound to the $H_\{3\}(1)$  Hankel determinant for starlike and convex functions with respect to symmetric points, using Toeplitz determinants.},
author = {D. Vamshee Krishna, B. Venkateswarlu, T. RamReddy},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Analytic function; starlike and convex functions with respect to symmetric points; upper bound; Hankel determinant; convolution; positive real function; Toeplitz determinants},
language = {eng},
number = {1},
pages = {null},
title = {Third Hankel determinant for starlike and convex functions with respect to symmetric points},
url = {http://eudml.org/doc/289783},
volume = {70},
year = {2016},
}

TY - JOUR
AU - D. Vamshee Krishna
AU - B. Venkateswarlu
AU - T. RamReddy
TI - Third Hankel determinant for starlike and convex functions with respect to symmetric points
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2016
VL - 70
IS - 1
SP - null
AB - The objective of this paper is to obtain best possible upper bound to the $H_{3}(1)$  Hankel determinant for starlike and convex functions with respect to symmetric points, using Toeplitz determinants.
LA - eng
KW - Analytic function; starlike and convex functions with respect to symmetric points; upper bound; Hankel determinant; convolution; positive real function; Toeplitz determinants
UR - http://eudml.org/doc/289783
ER -

References

top
  1. Ali, R. M., Coefficients of the inverse of strongly starlike functions, Bull. Malays. Math. Sci. Soc. (second series) 26 (1) (2003), 63-71. 
  2. Babalola, K. O., On H 3 ( 1 ) Hankel determinant for some classes of univalent functions, Inequality Theory and Applications 6 (2010), 1-7. 
  3. Das, R. N., Singh, P., On subclass of schlicht mappings, Indian J. Pure and Appl. Math. 8 (1977), 864-872. 
  4. Duren, P. L., Univalent Functions, Springer, New York, 1983. 
  5. Grenander, U., Szego, G., Toeplitz Forms and Their Applications, 2nd ed., Chelsea Publishing Co., New York, 1984. 
  6. Janteng, A., Halim, S. A., Darus, M., Hankel determinant for starlike and convex functions, Int. J. Math. Anal. (Ruse) 1 (13) (2007), 619-625. 
  7. Libera, R. J., Złotkiewicz, E. J., Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc. 87 (1983), 251-257. 
  8. Pommerenke, Ch., Univalent Functions, Vandenhoeck and Ruprecht, Gottingen, 1975. 
  9. Pommerenke, Ch., On the coefficients and Hankel determinants of univalent functions, J. Lond. Math. Soc. 41 (1966), 111-122. 
  10. Prithvipal Singh , A study of some subclasses of analytic functions in the unit disc, Ph.D. Thesis (1979), I.I.T. Kanpur. 
  11. Raja, M., Malik, S. N., Upper bound of third Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli, J. Inq. Appl. (2013), vol. 2013. 
  12. RamReddy, T., A study of certain subclasses of univalent analytic functions, Ph.D. Thesis (1983), I.I.T. Kanpur. 
  13. RamReddy, T., Vamshee Krishna, D., Hankel determinant for starlike and convex functions with respect to symmetric points, J. Ind. Math. Soc. (N. S.) 79 (1-4) (2012), 161-171. 
  14. Ratanchand, Some aspects of functions analytic in the unit disc, Ph.D. Thesis (1978), I.I.T. Kanpur. 
  15. Sakaguchi, K., On a certain univalent mapping, J. Math. Soc. Japan 11 (1959), 72-75. 
  16. Simon, B., Orthogonal Polynomials on the Unit Circle, Part 1. Classical Theory, American Mathematical Society, Providence (RI), 2005. 
  17. Vamshee Krishna, D., Venkateswarlu, B., RamReddy, T., Third Hankel determinant for certain subclass of p-valent functions, Complex Var. and Elliptic Eqns. 60 (9) (2015), 1301-1307. 
  18. Vamshee Krishna, D., RamReddy, T., Coefficient inequality for certain p-valent analytic functions, Rocky Mountain J. Math. 44 (6) (2014), 941-1959. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.