Boundedness and compactness of weighted composition operators between weighted Bergman spaces
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2012)
- Volume: 66, Issue: 1
- ISSN: 0365-1029
Access Full Article
topAbstract
topHow to cite
topElke Wolf. "Boundedness and compactness of weighted composition operators between weighted Bergman spaces." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 66.1 (2012): null. <http://eudml.org/doc/289792>.
@article{ElkeWolf2012,
abstract = {We study when a weighted composition operator acting between different weighted Bergman spaces is bounded, resp. compact.},
author = {Elke Wolf},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Weighted Bergman space; composition operator},
language = {eng},
number = {1},
pages = {null},
title = {Boundedness and compactness of weighted composition operators between weighted Bergman spaces},
url = {http://eudml.org/doc/289792},
volume = {66},
year = {2012},
}
TY - JOUR
AU - Elke Wolf
TI - Boundedness and compactness of weighted composition operators between weighted Bergman spaces
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2012
VL - 66
IS - 1
SP - null
AB - We study when a weighted composition operator acting between different weighted Bergman spaces is bounded, resp. compact.
LA - eng
KW - Weighted Bergman space; composition operator
UR - http://eudml.org/doc/289792
ER -
References
top- Bonet, J., Domański, P. and Lindstrom, M., Essential norm and weak compactness of composition operators on weighted Banach spaces of analytic functions, Canad. Math. Bull. 42 (1999), no. 2, 139-148.
- Bonet, J., Domański, P., Lindstrom, M. and Taskinen, J., Composition operators between weighted Banach spaces of analytic functions, J. Austral. Math. Soc. Ser. A 64 (1998), no. 1, 101-118.
- Bonet, J., Friz, M. and Jorda, E., Composition operators between weighted inductive limits of spaces of holomorphic functions, Publ. Math. Debrecen 67 (2005), no. 3-4, 333-348.
- Contreras, M. D., Hernandez-Dıaz, A. G., Weighted composition operators in weighted Banach spaces of analytic functions, J. Austral. Math. Soc. Ser. A 69 (2000), no. 1, 41-60.
- Cowen, C., MacCluer, B., Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995.
- Cuckovic, Z., Zhao, R., Weighted composition operators on the Bergman space, J. London Math. Soc. (2) 70 (2004), no. 2, 499-511.
- Duren, P., Schuster, A., Bergman Spaces, Mathematical Surveys and Monographs, 100, American Mathematical Society, Providence, RI, 2004.
- Hastings, W., A Carleson measure theorem for Bergman spaces, Proc. Amer. Math. Soc. 52 (1975), 237-241.
- Hedenmalm, H., Korenblum, B. and Zhu, K., Theory of Bergman spaces, Graduate Texts in Mathematics, 199, Springer–Verlag, New York, 2000.
- Kriete, T., MacCluer, B., Composition operators on large weighted Bergman spaces, Indiana Univ. Math. J. 41 (1992), no. 3, 755-788.
- Moorhouse, J., Compact differences of composition operators, J. Funct. Anal. 219 (2005), no. 1, 70-92.
- MacCluer, B., Ohno, S. and Zhao, R., Topological structure of the space of composition operators on , Integral Equations Operator Theory 40 (2001), no. 4, 481-494.
- Nieminen, P., Compact differences of composition operators on Bloch and Lipschitz spaces, Comput. Methods Funct. Theory 7 (2007), no. 2, 325-344.
- Palmberg, N., Weighted composition operators with closed range, Bull. Austral. Math. Soc. 75 (2007), no. 3, 331-354.
- Shapiro, J. H., Composition Operators and Classical Function Theory, Universitext: Tracts in Mathematics. Springer-Verlag, New York, 1993.
- Wolf, E., Weighted composition operators between weighted Bergman spaces, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Math. RACSAM 103 (2009), no. 1, 11-15.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.