Convolution conditions for bounded α -starlike functions of complex order

A. Y. Lashin

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2017)

  • Volume: 71, Issue: 1
  • ISSN: 0365-1029

Abstract

top
Let A be the class of analytic functions in the unit disc U of the complex plane with the normalization f ( 0 ) = f ' ( 0 ) - 1 = 0 . We introduce a subclass S M * ( α , b ) of A , which unifies the classes of bounded starlike and convex functions of complex order. Making use of Salagean operator, a more general class S M * ( n , α , b ) ( n 0 ) related to S M * ( α , b ) is also considered under the same conditions. Among other things, we find convolution conditions for a function f A to belong to the class S M * ( α , b ) . Several properties of the class S M * ( n , α , b ) are investigated.

How to cite

top

A. Y. Lashin. "Convolution conditions for bounded $\alpha $-starlike functions of complex order." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 71.1 (2017): null. <http://eudml.org/doc/289796>.

@article{A2017,
abstract = {Let $A$ be the class of analytic functions in the unit disc $U$ of the complex plane $\mathbb \{C\}$ with the normalization $f(0)=f^\{^\{\prime \}\}(0)-1=0$. We introduce a subclass $S_\{M\}^\{\ast \}(\alpha ,b)$ of $A$, which unifies the classes of bounded starlike and convex functions of complex order. Making use of Salagean operator, a more general class $S_\{M\}^\{\ast \}(n,\alpha ,b)$ ($n\ge 0$) related to $S_\{M\}^\{\ast \}(\alpha ,b)$ is also considered under the same conditions. Among other things, we find convolution conditions for a function $f\in A$ to belong to the class $S_\{M\}^\{\ast \}(\alpha ,b)$. Several properties of the class $S_\{M\}^\{\ast \}(n,\alpha ,b)$ are investigated.},
author = {A. Y. Lashin},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Univalent functions; bounded starlike functions of complex order; bounded convex functions of complex order; $\alpha $-starlike functions},
language = {eng},
number = {1},
pages = {null},
title = {Convolution conditions for bounded $\alpha $-starlike functions of complex order},
url = {http://eudml.org/doc/289796},
volume = {71},
year = {2017},
}

TY - JOUR
AU - A. Y. Lashin
TI - Convolution conditions for bounded $\alpha $-starlike functions of complex order
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2017
VL - 71
IS - 1
SP - null
AB - Let $A$ be the class of analytic functions in the unit disc $U$ of the complex plane $\mathbb {C}$ with the normalization $f(0)=f^{^{\prime }}(0)-1=0$. We introduce a subclass $S_{M}^{\ast }(\alpha ,b)$ of $A$, which unifies the classes of bounded starlike and convex functions of complex order. Making use of Salagean operator, a more general class $S_{M}^{\ast }(n,\alpha ,b)$ ($n\ge 0$) related to $S_{M}^{\ast }(\alpha ,b)$ is also considered under the same conditions. Among other things, we find convolution conditions for a function $f\in A$ to belong to the class $S_{M}^{\ast }(\alpha ,b)$. Several properties of the class $S_{M}^{\ast }(n,\alpha ,b)$ are investigated.
LA - eng
KW - Univalent functions; bounded starlike functions of complex order; bounded convex functions of complex order; $\alpha $-starlike functions
UR - http://eudml.org/doc/289796
ER -

References

top
  1. Aouf, M. K., Darwish, H. E., Attiya, A. A., On a class of certain analytic functions of complex order, Indian J. Pure Appl. Math. 32 (10) (2001), 1443-1452. 
  2. El-Ashwah, R. M., Some convolution and inclusion properties for subclasses of bounded univalent functions of complex order, Thai J. Math. 12 (2) (2014), 373-384. 
  3. Goodman, A. W., Univalent Functions, Vol. I, II, Tampa, Florida, 1983. 
  4. Kulshrestha, P. K., Bounded Robertson functions, Rend. Mat. 6 (1) (1976), 137-150. 
  5. Kulshrestha, P. K., Distortion of spiral-like mapping, Proc. Royal Irish Acad. 73A (1973) 1-5. 
  6. Libera, R. J., Univalent λ -spiral functions, Canad. J. Mat. 19 (1967) 449-456. 
  7. Nasr, M. A., Aouf, M. K., On convex functions of complex order, Mansoura Sci. Bull. 9 (1982), 565-582. 
  8. Nasr, M. A., Aouf, M. K., Bounded convex functions of complex order, Mansoura Sci. Bull. 10 (1983), 513-526. 
  9. Nasr, M. A., Aouf, M. K., Bounded starlike functions of complex order, Proc. Indian Acad. Sci. (Math. Sci.) 92 (2) (1983) 97-102. 
  10. Nasr, M. A., Aouf, M. K., Starlike functions of complex order, J. Natur. Sci. Math. 25 (1985), 1-12. 
  11. Padmanabhan, K. S., Ganesan, M. S., Convolution conditions for certain class of analytic functions, Indian J. Pure Appl. Math. 15 (1984), 777-780. 
  12. Robertson, M. S., On the theory of univalent functions, Ann. of Math. 37 (1936), 374-408. 
  13. Salagean, G. S., Subclasses of univalent functions, in: Complex Analysis – Fifth Romanian-Finnish Seminar (C. A. Cazacu, N. Boboc, M. Jurchescu, I. Suciu, eds.) Springer, Berlin–Heidelberg, 1983, 362-372. 
  14. Silverman, H., Silvia, E. M., Telage, D., Convolution conditions for convexity and starlikeness and spiral-likeness, Math. Z. 162 (1978), 125-130. 
  15. Sizuk, P. I., Regular functions f ( z ) for which z f ' ( z ) is λ -spirallike, Proc. Amer. Math. Soc. 49 (1975), 151-160. 
  16. Singh, R., Singh, V., On a class of bounded starlike functions, Indian J. Pure Appl. Math. 5 (8) (1974), 733-754. 
  17. Wiatrowski, P., The coefficient of a certain family of holomorphic functions, Zeszyty Nauk. Uniw. Łódz. Nauki Mat. Przyrod. Ser. II No. 39 Mat. (1971), 75-85. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.