Integral formula for secantoptics and its application
Witold Mozgawa; Magdalena Skrzypiec
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2012)
- Volume: 66, Issue: 1
- ISSN: 0365-1029
Access Full Article
topAbstract
topHow to cite
topWitold Mozgawa, and Magdalena Skrzypiec. "Integral formula for secantoptics and its application." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 66.1 (2012): null. <http://eudml.org/doc/289798>.
@article{WitoldMozgawa2012,
abstract = {Some properties of secantoptics of ovals defined by Skrzypiec in 2008 were proved by Mozgawa and Skrzypiec in 2009. In this paper we generalize to this case results obtained by Cieslak, Miernowski and Mozgawa in 1996 and derive an integral formula for an annulus bounded by a given oval and its secantoptic. We describe the change of the area bounded by a secantoptic and find the differential equation for this function. We finish with some examples illustrating the above results.},
author = {Witold Mozgawa, Magdalena Skrzypiec},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Secantoptic; isoptic; secant},
language = {eng},
number = {1},
pages = {null},
title = {Integral formula for secantoptics and its application},
url = {http://eudml.org/doc/289798},
volume = {66},
year = {2012},
}
TY - JOUR
AU - Witold Mozgawa
AU - Magdalena Skrzypiec
TI - Integral formula for secantoptics and its application
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2012
VL - 66
IS - 1
SP - null
AB - Some properties of secantoptics of ovals defined by Skrzypiec in 2008 were proved by Mozgawa and Skrzypiec in 2009. In this paper we generalize to this case results obtained by Cieslak, Miernowski and Mozgawa in 1996 and derive an integral formula for an annulus bounded by a given oval and its secantoptic. We describe the change of the area bounded by a secantoptic and find the differential equation for this function. We finish with some examples illustrating the above results.
LA - eng
KW - Secantoptic; isoptic; secant
UR - http://eudml.org/doc/289798
ER -
References
top- Benko, K., Cieślak, W., Góźdź, S. and Mozgawa, W., On isoptic curves, An. Stiint. Univ. Al. I. Cuza Iasi Sect¸. I a Mat. 36 (1990), no. 1, 47-54.
- Cieślak, W., Miernowski, A. and Mozgawa, W., Isoptics of a closed strictly convex curve, Global differential geometry and global analysis (Berlin, 1990), Lecture Notes in Math., 1481, Springer, Berlin, 1991, 28-35.
- Cieślak, W., Miernowski, A. and Mozgawa, W., Isoptics of a closed strictly convex curve. II, Rend. Sem. Mat. Univ. Padova 96 (1996), 37-49.
- Gage, M., On an area-preserving evolution equation for plane curves, Nonlinear Problems in Geometry (Mobile, Ala., 1985), Contemp. Math., 51, Amer. Math. Soc., Providence, RI, 1986, 51-62.
- Green, J. W., Sets subtending a constant angle on a circle, Duke Math. J. 17 (1950), 263-267.
- Góźdź, S., On Jordan plane curves which are isoptics of an oval, An. Stiint¸. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 42 (1996), no. 1, 127-130.
- Hilton, H., Colomb, R. E., On orthoptic and isoptic loci, Amer. J. Math. 39 (1917), no. 1, 86-94.
- Langevin, R., Levitt, G. and Rosenberg, H., Herissons et multiherissons (envellopes parametrees par leur application de Gauss), Singularities (Warsaw, 1985), Banach Center Publ. 20, PWN, Warsaw, 1988, 245-253.
- Martinez-Maure, Y., Geometric inequalities for plane hedgehogs, Demonstratio Math. 32 (1999), no. 1, 177-183.
- Michalska, M., A sufficient condition for the convexity of the area of an isoptic curve of an oval, Rend. Sem. Mat. Univ. Padova 110 (2003), 161-169.
- Miernowski, A., Mozgawa, W., Isoptics of pairs of nested closed strictly convex curves and Crofton-type formulas, Beitr¨age Algebra Geom. 42 (2001), no. 1, 281-288.
- Mozgawa, W., Skrzypiec, M., Crofton formulas and convexity condition for secantoptics, Bull. Belg. Math. Soc. Simon Stevin 16 (2009), no. 3, 435-445.
- Santalo, L., Integral geometry and geometric probability, Encyclopedia of Mathematics and its Applications, vol. 1. Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976.
- Skrzypiec, M., A note on secantoptics, Beitrage Algebra Geom. 49, (2008), no. 1, 205-215.
- Szałkowski, D., Isoptics of open rosettes, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 59 (2005), 119-128.
- Szałkowski, D., Isoptics of open rosettes. II, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 53 (2007), no. 1, 167-176.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.