Rotation indices related to Poncelet’s closure theorem

Waldemar Cieślak; Horst Martini; Witold Mozgawa

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2014)

  • Volume: 68, Issue: 2
  • ISSN: 0365-1029

Abstract

top
Let CRCr denote an annulus formed by two non-concentric circles CR, Cr in the Euclidean plane. We prove that if Poncelet’s closure theorem holds for k-gons circuminscribed to CRCr, then there exist circles inside this annulus which satisfy Poncelet’s closure theorem together with Cr, with n- gons for any n > k.

How to cite

top

Waldemar Cieślak, Horst Martini, and Witold Mozgawa. "Rotation indices related to Poncelet’s closure theorem." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 68.2 (2014): null. <http://eudml.org/doc/289799>.

@article{WaldemarCieślak2014,
abstract = {Let CRCr denote an annulus formed by two non-concentric circles CR, Cr in the Euclidean plane. We prove that if Poncelet’s closure theorem holds for k-gons circuminscribed to CRCr, then there exist circles inside this annulus which satisfy Poncelet’s closure theorem together with Cr, with n- gons for any n > k.},
author = {Waldemar Cieślak, Horst Martini, Witold Mozgawa},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {},
language = {eng},
number = {2},
pages = {null},
title = {Rotation indices related to Poncelet’s closure theorem},
url = {http://eudml.org/doc/289799},
volume = {68},
year = {2014},
}

TY - JOUR
AU - Waldemar Cieślak
AU - Horst Martini
AU - Witold Mozgawa
TI - Rotation indices related to Poncelet’s closure theorem
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2014
VL - 68
IS - 2
SP - null
AB - Let CRCr denote an annulus formed by two non-concentric circles CR, Cr in the Euclidean plane. We prove that if Poncelet’s closure theorem holds for k-gons circuminscribed to CRCr, then there exist circles inside this annulus which satisfy Poncelet’s closure theorem together with Cr, with n- gons for any n > k.
LA - eng
KW -
UR - http://eudml.org/doc/289799
ER -

References

top
  1. Berger, M., Geometry, I and II, Springer, Berlin, 1987. 
  2. Black, W. L., Howland, H. C., Howland, B., A theorem about zigzags between two circles, Amer. Math. Monthly 81 (1974), 754–757. 
  3. Bos, H. J. M., Kers, C., Dort, F., Raven, D. W., Poncelet’s closure theorem, Expo. Math. 5 (1987), 289–364. 
  4. Cima, A., Gasull, A., Manosa, V., On Poncelet’s maps, Comput. Math. Appl. 60 (2010), 1457–1464. 
  5. Cieslak, W., The Poncelet annuli, Beitr. Algebra Geom. 55 (2014), 301–309. 
  6. Cieslak, W., Martini, H., Mozgawa, W., On the rotation index of bar billiards and Poncelet’s porism, Bull. Belg. Math. Soc. Simon Stevin 20 (2013), 287–300. 
  7. Lion, G., Variational aspects of Poncelet’s theorem, Geom. Dedicata 52 (1994), 105– 118. 
  8. Martini, H., Recent results in elementary geometry, Part II, Symposia Gaussiana, Proc. 2nd Gauss Symposium (Munich, 1993), de Gruyter, Berlin and New York, 1995, 419–443. 
  9. Schwartz, R., The Poncelet grid, Adv. Geom. 7 (2007), 157-175. 
  10. Weisstein, E. W., Poncelet’s Porism, http:/mathworld. wolfram. com/Ponceletsporism.html 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.