Entire functions of exponential type not vanishing in the half-plane z > k , where k > 0

Mohamed Amine Hachani

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2017)

  • Volume: 71, Issue: 1
  • ISSN: 0365-1029

Abstract

top
Let P ( z ) be a polynomial of degree n having no zeros in | z | < k , k 1 , and let Q ( z ) : = z n P ( 1 / z ¯ ) ¯ . It was shown by Govil that if max | z | = 1 | P ' ( z ) | and max | z | = 1 | Q ' ( z ) | are attained at the same point of the unit circle | z | = 1 , then max | z | = 1 | P ' ( z ) | n 1 + k n max | z | = 1 | P ( z ) | . The main result of the present article is a generalization of Govil’s polynomial inequality to a class of entire functions of exponential type.

How to cite

top

Mohamed Amine Hachani. "Entire functions of exponential type not vanishing in the half-plane $\Im z > k$, where $k > 0$." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 71.1 (2017): null. <http://eudml.org/doc/289813>.

@article{MohamedAmineHachani2017,
abstract = {Let $P (z)$ be a polynomial of degree $n$ having no zeros in $|z| < k$, $k \le 1$, and let $Q (z) := z^n \overline\{P (1/\{\overline\{z\}\})\}$. It was shown by Govil that if $\max _\{|z| = 1\} |P^\prime (z)|$ and $\max _\{|z| = 1\} |Q^\prime (z)|$ are attained at the same point of the unit circle $|z| = 1$, then \[\max \_\{|z| = 1\} |P^\{\prime \}(z)| \le \frac\{n\}\{1 + k^n\} \max \_\{|z| = 1\} |P(z)|.\] The main result of the present article is a generalization of Govil’s polynomial inequality to a class of entire functions of exponential type.},
author = {Mohamed Amine Hachani},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Inequalities; entire functions of exponential type; polynomial; trigonometric polynomial},
language = {eng},
number = {1},
pages = {null},
title = {Entire functions of exponential type not vanishing in the half-plane $\Im z > k$, where $k > 0$},
url = {http://eudml.org/doc/289813},
volume = {71},
year = {2017},
}

TY - JOUR
AU - Mohamed Amine Hachani
TI - Entire functions of exponential type not vanishing in the half-plane $\Im z > k$, where $k > 0$
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2017
VL - 71
IS - 1
SP - null
AB - Let $P (z)$ be a polynomial of degree $n$ having no zeros in $|z| < k$, $k \le 1$, and let $Q (z) := z^n \overline{P (1/{\overline{z}})}$. It was shown by Govil that if $\max _{|z| = 1} |P^\prime (z)|$ and $\max _{|z| = 1} |Q^\prime (z)|$ are attained at the same point of the unit circle $|z| = 1$, then \[\max _{|z| = 1} |P^{\prime }(z)| \le \frac{n}{1 + k^n} \max _{|z| = 1} |P(z)|.\] The main result of the present article is a generalization of Govil’s polynomial inequality to a class of entire functions of exponential type.
LA - eng
KW - Inequalities; entire functions of exponential type; polynomial; trigonometric polynomial
UR - http://eudml.org/doc/289813
ER -

References

top
  1. Besicovitch, A. S., Almost Periodic Functions, Cambridge University Press, London, 1932. 
  2. Boas, R. P. Jr., Entire Functions, Academic Press, New York, 1954. 
  3. Boas, R. P. Jr., Inequalities for asymmetric entire functions, Illinois J. Math. 3 (1957), 1-10. 
  4. Bohr, H., Almost Periodic Functions, Chelsea Publishing Company, New York, 1947. 
  5. van der Corput, J. G., Schaake G., Ungleichungen fur Polynome und trigonometrische Polynome, Composito Math. 2 (1935), 321-61. 
  6. Govil, N. K., On a theorem of S. Bernstein, Proc. Nat. Acad. Sci. India 50 (A) (1980), 50-52. 
  7. Levin, B. Ya., On a special class of entire functions and on related extremal properties of entire functions of finite degree, Izvestiya Akad. Nauk SSSR. Ser. Math. 14 (1950), 45-84 (Russian). 
  8. Qazi, M. A., Rahman, Q. I., The Schwarz–Pick theorem and its applications, Ann. Univ. Mariae Curie-Skłodowska Sect. A 65 (2) (2011), 149-167. 
  9. Rahman, Q. I., Schmeisser, G., Analytic Theory of Polynomials, Clarendon Press, Oxford, 2002. 
  10. Riesz, M., Formule d’interpolation pour la derivee d’un polynome trigonometrique, C. R. Acad. Sci. Paris 158 (1914), 1152-1154. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.