Classes of meromorphic multivalent functions with Montel’s normalization

Jacek Dziok

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2012)

  • Volume: 66, Issue: 2
  • ISSN: 0365-1029

Abstract

top
In the paper we define classes of meromorphic multivalent functions with Montel’s normalization. We investigate the coefficients estimates, distortion properties, the radius of starlikeness, subordination theorems and partial sums for the defined classes of functions. Some remarks depicting consequences of the main results are also mentioned.

How to cite

top

Jacek Dziok. "Classes of meromorphic multivalent functions with Montel’s normalization." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 66.2 (2012): null. <http://eudml.org/doc/289819>.

@article{JacekDziok2012,
abstract = {In the paper we define classes of meromorphic multivalent functions with Montel’s normalization. We investigate the coefficients estimates, distortion properties, the radius of starlikeness, subordination theorems and partial sums for the defined classes of functions. Some remarks depicting consequences of the main results are also mentioned.},
author = {Jacek Dziok},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Meromorphic functions; varying arguments; fixed points; Montel’s normalization; subordination; Hadamard product},
language = {eng},
number = {2},
pages = {null},
title = {Classes of meromorphic multivalent functions with Montel’s normalization},
url = {http://eudml.org/doc/289819},
volume = {66},
year = {2012},
}

TY - JOUR
AU - Jacek Dziok
TI - Classes of meromorphic multivalent functions with Montel’s normalization
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2012
VL - 66
IS - 2
SP - null
AB - In the paper we define classes of meromorphic multivalent functions with Montel’s normalization. We investigate the coefficients estimates, distortion properties, the radius of starlikeness, subordination theorems and partial sums for the defined classes of functions. Some remarks depicting consequences of the main results are also mentioned.
LA - eng
KW - Meromorphic functions; varying arguments; fixed points; Montel’s normalization; subordination; Hadamard product
UR - http://eudml.org/doc/289819
ER -

References

top
  1. Aouf, M. K., Certain classes of meromorphic multivalent functions with positive coefficients, Math. Comput. Modelling 47 (2008), 328-340. 
  2. Aouf, M. K., Certain subclasses of meromorphically p-valent functions with positive or negative coefficients, Math. Comput. Modelling 47 (2008), 997-1008. 
  3. Aouf, M. K., Silverman, H., Partial sums of certain meromorphic p-valent functions, J. Ineq. Pure and Appl. Math. 7(4) (2006), art. no. 119. 
  4. Darwish, H. E., Meromorphic p-valent starlike functions with negative coefficients, J. Ineq. Pure and Appl. Math. 33 (2002), 967-76. 
  5. Dziok, J., Classes of meromorphic functions associated with conic regions, Acta Math. Sci. Ser. B Engl. Ed. 32 (2012), 765-774. 
  6. Dziok, J., Srivastava, H. M., Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transform. Spec. Funct. 14 (2003), 7-18. 
  7. Montel, P., Lecons sur les Fonctions Univalentes ou Multivalentes, Gauthier-Villars, Paris, 1933. 
  8. Mogra, M. L., Meromorphic multivalent functions with positive coefficients I and II, Math. Japon. 35 (1990), 1-11 and 1089-1098. 
  9. Silverman, H., Partial sums of starlike and convex functions, J. Math. Anal. Appl. 209 (1997), 221-227. 
  10. Silverman, H., Univalent functions with varying arguments, Houston J. Math. 7 (1981), 283-287. 
  11. Silvia, E. M., Partial sums of convex functions of order α , Houston. J. Math. 11 (1985), 397-404. 
  12. Srivastava, H. M., Owa, S., Certain classes of analytic functions with varying arguments, J. Math. Anal. Appl. 136 (1988), 217-228. 
  13. Raina, R. K., Srivastava, H. M., A new class of meromorphically multivalent functions with applications to generalized hypergeometric functions, Math. Comput. Modelling 43 (2006), 350-356. 
  14. Wilf, H. S., Subordinating factor sequence for convex maps of the unit circle, Proc. Amer. Math. Soc. 12 (1961), 689-693. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.