Renormings of c 0 and the minimal displacement problem

Łukasz Piasecki

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2014)

  • Volume: 68, Issue: 2
  • ISSN: 0365-1029

Abstract

top
The aim of this paper is to show that for every Banach space ( X , · ) containing asymptotically isometric copy of the space c 0 there is a bounded, closed and convex set C X with the Chebyshev radius r ( C ) = 1 such that for every k 1 there exists a k -contractive mapping T : C C with x - T x > 1 1 / k for any x C .

How to cite

top

Łukasz Piasecki. "Renormings of $c_0$ and the minimal displacement problem." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 68.2 (2014): null. <http://eudml.org/doc/289825>.

@article{ŁukaszPiasecki2014,
abstract = {The aim of this paper is to show that for every Banach space $(X, \Vert \cdot \Vert )$ containing asymptotically isometric copy of the space $c_0$ there is a bounded, closed and convex set $C \subset X$ with the Chebyshev radius $r(C) = 1$ such that for every $k \ge 1 $ there exists a $k$-contractive mapping $T : C \rightarrow C$ with $\Vert x - Tx \Vert > 1 − 1/k$ for any $x \in C$.},
author = {Łukasz Piasecki},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {},
language = {eng},
number = {2},
pages = {null},
title = {Renormings of $c_0$ and the minimal displacement problem},
url = {http://eudml.org/doc/289825},
volume = {68},
year = {2014},
}

TY - JOUR
AU - Łukasz Piasecki
TI - Renormings of $c_0$ and the minimal displacement problem
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2014
VL - 68
IS - 2
SP - null
AB - The aim of this paper is to show that for every Banach space $(X, \Vert \cdot \Vert )$ containing asymptotically isometric copy of the space $c_0$ there is a bounded, closed and convex set $C \subset X$ with the Chebyshev radius $r(C) = 1$ such that for every $k \ge 1 $ there exists a $k$-contractive mapping $T : C \rightarrow C$ with $\Vert x - Tx \Vert > 1 − 1/k$ for any $x \in C$.
LA - eng
KW -
UR - http://eudml.org/doc/289825
ER -

References

top
  1. Bolibok, K., The minimal displacement problem in the space l 1 , Cent. Eur. J. Math. 10 (2012), 2211–2214. 
  2. Bolibok, K., Constructions of lipschitzian mappings with non zero minimal displacement in spaces L 1 ( 0 , 1 ) and L 2 ( 0 , 1 ) , Ann. Univ. Mariae Curie-Skłodowska Sec. A 50 (1996), 25–31. 
  3. Dowling, P. N., Lennard C. J., Turett, B., Reflexivity and the fixed point property for nonexpansive maps, J. Math. Anal. Appl. 200 (1996), 653–662. 
  4. Dowling, P. N., Lennard, C. J., Turett, B., Some fixed point results in l 1 and c 0 , Nonlinear Anal. 39 (2000), 929–936. 
  5. Dowling, P. N., Lennard C. J., Turett , B., Asymptotically isometric copies of c 0 in Banach spaces, J. Math. Anal. Appl. 219 (1998), 377–391. 
  6. Goebel, K., On the minimal displacement of points under lipschitzian mappings, Pacific J. Math. 45 (1973), 151–163. 
  7. Goebel, K., Concise Course on Fixed Point Theorems, Yokohama Publishers, Yokohama, 2002. 
  8. Goebel, K., Kirk, W. A., Topics in metric fixed point theory, Cambridge University Press, Cambridge, 1990. 
  9. Goebel, K., Marino, G., Muglia, L., Volpe, R., The retraction constant and minimal displacement characteristic of some Banach spaces, Nonlinear Anal. 67 (2007), 735– 744. 
  10. James, R. C., Uniformly non-square Banach spaces, Ann. of Math. 80 (1964), 542– 550. 
  11. Kirk, W. A., Sims, B. (Eds.), Handbook of Metric Fixed Point Theory, Kluwer Academic Publishers, Dordrecht, 2001. 
  12. Lin, P. K., Sternfeld, Y., Convex sets with the Lipschitz fixed point property are compact, Proc. Amer. Math. Soc. 93 (1985), 633–639. 
  13. Piasecki, Ł., Retracting a ball onto a sphere in some Banach spaces, Nonlinear Anal. 74 (2011), 396–399. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.