Renormings of and the minimal displacement problem
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2014)
- Volume: 68, Issue: 2
- ISSN: 0365-1029
Access Full Article
topAbstract
topHow to cite
topŁukasz Piasecki. "Renormings of $c_0$ and the minimal displacement problem." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 68.2 (2014): null. <http://eudml.org/doc/289825>.
@article{ŁukaszPiasecki2014,
abstract = {The aim of this paper is to show that for every Banach space $(X, \Vert \cdot \Vert )$ containing asymptotically isometric copy of the space $c_0$ there is a bounded, closed and convex set $C \subset X$ with the Chebyshev radius $r(C) = 1$ such that for every $k \ge 1 $ there exists a $k$-contractive mapping $T : C \rightarrow C$ with $\Vert x - Tx \Vert > 1 − 1/k$ for any $x \in C$.},
author = {Łukasz Piasecki},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {},
language = {eng},
number = {2},
pages = {null},
title = {Renormings of $c_0$ and the minimal displacement problem},
url = {http://eudml.org/doc/289825},
volume = {68},
year = {2014},
}
TY - JOUR
AU - Łukasz Piasecki
TI - Renormings of $c_0$ and the minimal displacement problem
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2014
VL - 68
IS - 2
SP - null
AB - The aim of this paper is to show that for every Banach space $(X, \Vert \cdot \Vert )$ containing asymptotically isometric copy of the space $c_0$ there is a bounded, closed and convex set $C \subset X$ with the Chebyshev radius $r(C) = 1$ such that for every $k \ge 1 $ there exists a $k$-contractive mapping $T : C \rightarrow C$ with $\Vert x - Tx \Vert > 1 − 1/k$ for any $x \in C$.
LA - eng
KW -
UR - http://eudml.org/doc/289825
ER -
References
top- Bolibok, K., The minimal displacement problem in the space , Cent. Eur. J. Math. 10 (2012), 2211–2214.
- Bolibok, K., Constructions of lipschitzian mappings with non zero minimal displacement in spaces and , Ann. Univ. Mariae Curie-Skłodowska Sec. A 50 (1996), 25–31.
- Dowling, P. N., Lennard C. J., Turett, B., Reflexivity and the fixed point property for nonexpansive maps, J. Math. Anal. Appl. 200 (1996), 653–662.
- Dowling, P. N., Lennard, C. J., Turett, B., Some fixed point results in and , Nonlinear Anal. 39 (2000), 929–936.
- Dowling, P. N., Lennard C. J., Turett , B., Asymptotically isometric copies of in Banach spaces, J. Math. Anal. Appl. 219 (1998), 377–391.
- Goebel, K., On the minimal displacement of points under lipschitzian mappings, Pacific J. Math. 45 (1973), 151–163.
- Goebel, K., Concise Course on Fixed Point Theorems, Yokohama Publishers, Yokohama, 2002.
- Goebel, K., Kirk, W. A., Topics in metric fixed point theory, Cambridge University Press, Cambridge, 1990.
- Goebel, K., Marino, G., Muglia, L., Volpe, R., The retraction constant and minimal displacement characteristic of some Banach spaces, Nonlinear Anal. 67 (2007), 735– 744.
- James, R. C., Uniformly non-square Banach spaces, Ann. of Math. 80 (1964), 542– 550.
- Kirk, W. A., Sims, B. (Eds.), Handbook of Metric Fixed Point Theory, Kluwer Academic Publishers, Dordrecht, 2001.
- Lin, P. K., Sternfeld, Y., Convex sets with the Lipschitz fixed point property are compact, Proc. Amer. Math. Soc. 93 (1985), 633–639.
- Piasecki, Ł., Retracting a ball onto a sphere in some Banach spaces, Nonlinear Anal. 74 (2011), 396–399.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.