The Ramsey numbers for some subgraphs of generalized wheels versus cycles and paths
Halina Bielak; Kinga Dąbrowska
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2015)
- Volume: 69, Issue: 2
- ISSN: 0365-1029
Access Full Article
topAbstract
topHow to cite
topHalina Bielak, and Kinga Dąbrowska. "The Ramsey numbers for some subgraphs of generalized wheels versus cycles and paths." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 69.2 (2015): null. <http://eudml.org/doc/289826>.
@article{HalinaBielak2015,
abstract = {The Ramsey number $R(G, H)$ for a pair of graphs $G$ and $H$ is defined as the smallest integer $n$ such that, for any graph $F$ on $n$ vertices, either $F$ contains $G$ or $\overline\{F\}$ contains $H$ as a subgraph, where $\overline\{F\}$ denotes the complement of $F$. We study Ramsey numbers for some subgraphs of generalized wheels versus cycles and paths and determine these numbers for some cases. We extend many known results studied in [5, 14, 18, 19, 20]. In particular we count the numbers $R(K_1+L_n, P_m)$ and $R(K_1+L_n, C_m)$ for some integers $m$, $n$, where $L_n$ is a linear forest of order $n$ with at least one edge.},
author = {Halina Bielak, Kinga Dąbrowska},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Cycle; path; Ramsey number; Turan number},
language = {eng},
number = {2},
pages = {null},
title = {The Ramsey numbers for some subgraphs of generalized wheels versus cycles and paths},
url = {http://eudml.org/doc/289826},
volume = {69},
year = {2015},
}
TY - JOUR
AU - Halina Bielak
AU - Kinga Dąbrowska
TI - The Ramsey numbers for some subgraphs of generalized wheels versus cycles and paths
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2015
VL - 69
IS - 2
SP - null
AB - The Ramsey number $R(G, H)$ for a pair of graphs $G$ and $H$ is defined as the smallest integer $n$ such that, for any graph $F$ on $n$ vertices, either $F$ contains $G$ or $\overline{F}$ contains $H$ as a subgraph, where $\overline{F}$ denotes the complement of $F$. We study Ramsey numbers for some subgraphs of generalized wheels versus cycles and paths and determine these numbers for some cases. We extend many known results studied in [5, 14, 18, 19, 20]. In particular we count the numbers $R(K_1+L_n, P_m)$ and $R(K_1+L_n, C_m)$ for some integers $m$, $n$, where $L_n$ is a linear forest of order $n$ with at least one edge.
LA - eng
KW - Cycle; path; Ramsey number; Turan number
UR - http://eudml.org/doc/289826
ER -
References
top- Burr, S. A., Ramsey numbers involving graphs with long suspended paths,
- J. London Math. Soc. 24 (2) (1981), 405-413.
- Burr, S. A., Erdos, P., Generalization of a Ramsey-theoretic result of Chvatal, J. Graph Theory 7 (1983), 39-51.
- Chen, Y., Cheng, T. C. E., Ng, C. T., Zhang, Y., A theorem on cycle-wheel Ramsey number, Discrete Math. 312 (2012), 1059-1061.
- Chen, Y., Cheng, T. C. E., Miao, Z., Ng, C. T., The Ramsey numbers for cycles versus wheels of odd order, Appl. Math. Letters 22 (2009), 875-1876.
- Chen, Y., Zhang, Y., Zhang, K., The Ramsey numbers of paths versus wheels, Discrete Math. 290 (2005), 85-87.
- Faudree, R. J., Lawrence, S. L., Parsons, T. D., Schelp, R. H., Path-cycle Ramsey numbers, Discrete Math. 10 (1974), 269-277.
- Faudree, R. J., Schelp, R. H., All Ramsey numbers for cycles in graphs, Discrete Math. 8 (1974), 313-329.
- Karolyi, G., Rosta, V., Generalized and geometric Ramsey numbers for cycles, Theoretical Computer Science 263 (2001), 87-98.
- Lin, Q., Li, Y., Dong, L., Ramsey goodness and generalized stars, Europ. J. Combin. 31 (2010), 1228-1234.
- Radziszowski, S. P., Small Ramsey numbers, The Electronic Journal of Combinatorics (2014), DS1.14.
- Radziszowski, S. P., Xia, J., Paths, cycles and wheels without antitriangles,
- Australasian J. Combin. 9 (1994), 221-232.
- Rosta, V.,On a Ramsey type problem of J. A. Bondy and P. Erdos, I, II, J. Combin. Theory Ser. B 15 (1973), 94-120.
- Salman, A. N. M., Broersma, H. J., On Ramsey numbers for paths versus wheels, Discrete Math. 307 (2007), 975-982.
- Shi, L., Ramsey numbers of long cycles versus books or wheels, European J. Combin. 31 (2010), 828-838.
- Surahmat, Baskoro, E. T., Broersma, H. J., The Ramsey numbers of large cycles versus small wheels, Integers 4 (2004), A10.
- Surahmat, Baskoro, E. T., Tomescu, I., The Ramsey numbers of large cycles versus odd wheels, Graphs Combin. 24 (2008), 53-58.
- Surahmat, Baskoro, E. T., Tomescu, I., The Ramsey numbers of large cycles versus wheels, Discrete Math. 306 (24) (2006), 3334-3337.
- Zhang, Y., On Ramsey numbers of short paths versus large wheels, Ars Combin. 89 (2008), 11-20.
- Zhang, L., Chen, Y., Cheng, T. C., The Ramsey numbers for cycles versus wheels of even order, European J. Combin. 31 (2010), 254-259.
- Zhang, Y., Chen, Y., The Ramsey numbers of wheels versus odd cycles, Discrete Math. 323 (2014), 76-80.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.