The Riemann-Cantor uniqueness theorem for unilateral trigonometric series via a special version of the Lusin-Privalov theorem

Raymond Mortini

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2017)

  • Volume: 71, Issue: 1
  • ISSN: 0365-1029

Abstract

top
Using Baire's theorem, we give a very simple proof of a special version of the Lusin-Privalov theorem and deduce via Abel's  theorem the  Riemann-Cantor theorem on the uniqueness of the coefficients of pointwise convergent unilateral trigonometric series.

How to cite

top

Raymond Mortini. "The Riemann-Cantor uniqueness theorem for unilateral trigonometric series via a special version of the Lusin-Privalov theorem." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 71.1 (2017): null. <http://eudml.org/doc/289827>.

@article{RaymondMortini2017,
abstract = {Using Baire's theorem, we give a very simple proof of a special version of the Lusin-Privalov theorem and deduce via Abel's  theorem the  Riemann-Cantor theorem on the uniqueness of the coefficients of pointwise convergent unilateral trigonometric series.},
author = {Raymond Mortini},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Boundary behaviour of analytic functions; trigonometric series},
language = {eng},
number = {1},
pages = {null},
title = {The Riemann-Cantor uniqueness theorem for unilateral trigonometric series via a special version of the Lusin-Privalov theorem},
url = {http://eudml.org/doc/289827},
volume = {71},
year = {2017},
}

TY - JOUR
AU - Raymond Mortini
TI - The Riemann-Cantor uniqueness theorem for unilateral trigonometric series via a special version of the Lusin-Privalov theorem
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2017
VL - 71
IS - 1
SP - null
AB - Using Baire's theorem, we give a very simple proof of a special version of the Lusin-Privalov theorem and deduce via Abel's  theorem the  Riemann-Cantor theorem on the uniqueness of the coefficients of pointwise convergent unilateral trigonometric series.
LA - eng
KW - Boundary behaviour of analytic functions; trigonometric series
UR - http://eudml.org/doc/289827
ER -

References

top
  1. Cima, J., Ross, W., The Backward Shift on the Hardy Space, AMS, Providence, 2000. 
  2. Fatou, P., Series trigonometriques et series de Taylor, Acta Math. 30 (1906), 335-400. 
  3. Kechris, A. S., Set theory and uniqueness for trigonometric series, Preprint 1997. http://www.math.caltech.edu/ kechris/papers/uniqueness.pdf 
  4. Riesz, F., Riesz, M., Uber die Randwerte einer analytischen Funktion, Quatrieme Congres des Math. Scand. (1916), 27-44, 
  5. Lusin, N., Privaloff, J., Sur l’unicite et la multiplicite des fonctions analytiques, Ann. Sci. ENS 42 (1925), 143-191. 
  6. Rudin, W., Real and Complex Analysis, third edition, McGraw-Hill, New York, 1986. 
  7. Zygmund, A., Trigonometric Series, second edition, Vol. I+II Combined, Cambridge Math. Lib. 1959 and 1993. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.