On certain general integral operators of analytic functions
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2012)
- Volume: 66, Issue: 1
- ISSN: 0365-1029
Access Full Article
topAbstract
topHow to cite
topB. A. Frasin. "On certain general integral operators of analytic functions." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 66.1 (2012): null. <http://eudml.org/doc/289831>.
@article{B2012,
abstract = {In this paper, we obtain new sufficient conditions for the operators $F_\{\alpha _1,\alpha _2,...,\alpha _n,\beta \}(z)$ and $G_\{\alpha _1,\alpha _2,...,\alpha _n,\beta \}(z)$ to be univalent in the open unit disc $\mathcal \{U\}$, where the functions $f_1, f_2,..., f_n$ belong to the classes $S^*(a, b)$ and $\mathcal \{K\}(a, b)$. The order of convexity for the operators $F_\{\alpha _1,\alpha _2,...,\alpha _n,\beta \}(z)$ and $G_\{\alpha _1,\alpha _2,...,\alpha _n,\beta \}(z)$ is also determined. Furthermore, and for $\beta = 1$, we obtain sufficient conditions for the operators $F_n(z)$ and $G_n(z)$ to be in the class $\mathcal \{K\}(a, b)$. Several corollaries and consequences of the main results are also considered.},
author = {B. A. Frasin},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Analytic functions; starlike and convex functions; integral operator},
language = {eng},
number = {1},
pages = {null},
title = {On certain general integral operators of analytic functions},
url = {http://eudml.org/doc/289831},
volume = {66},
year = {2012},
}
TY - JOUR
AU - B. A. Frasin
TI - On certain general integral operators of analytic functions
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2012
VL - 66
IS - 1
SP - null
AB - In this paper, we obtain new sufficient conditions for the operators $F_{\alpha _1,\alpha _2,...,\alpha _n,\beta }(z)$ and $G_{\alpha _1,\alpha _2,...,\alpha _n,\beta }(z)$ to be univalent in the open unit disc $\mathcal {U}$, where the functions $f_1, f_2,..., f_n$ belong to the classes $S^*(a, b)$ and $\mathcal {K}(a, b)$. The order of convexity for the operators $F_{\alpha _1,\alpha _2,...,\alpha _n,\beta }(z)$ and $G_{\alpha _1,\alpha _2,...,\alpha _n,\beta }(z)$ is also determined. Furthermore, and for $\beta = 1$, we obtain sufficient conditions for the operators $F_n(z)$ and $G_n(z)$ to be in the class $\mathcal {K}(a, b)$. Several corollaries and consequences of the main results are also considered.
LA - eng
KW - Analytic functions; starlike and convex functions; integral operator
UR - http://eudml.org/doc/289831
ER -
References
top- Ahlfors, L. V., Sufficient conditions for quasiconformal extension, Discontinuous groups and Riemann surfaces (Proc. Conf., Univ. Maryland, College Park, Md., 1973), pp. 23-29. Ann. of Math. Studies, No. 79, Princeton Univ. Press, Princeton, N.J., 1974.
- Becker, J., Lownersche Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen, J. Reine Angew. Math. 255 (1972), 23-43.
- Becker, J., Lownersche Differentialgleichung und Schlichtheitskriterien, Math. Ann. 202 (1973), 321-335.
- Breaz, D., Univalence properties for a general integral operator, Bull. Korean Math. Soc. 46 (2009), no. 3, 439-446.
- Breaz, D., Breaz, N., Two integral operators, Studia Universitatis Babes-Bolyai Math., 47 (2002), no. 3, 13-19.
- Breaz, D., Breaz, N., Univalence conditions for certain integral operators, Studia Universitatis Babes-Bolyai, Mathematica, 47 (2002), no. 2, 9-15.
- Breaz, D., Owa, S., Some extensions of univalent conditions for certain integral operators, Math. Inequal. Appl., 10 (2007), no. 2, 321-325.
- Bulut, S., Univalence preserving integral operators defined by generalized Al- Oboudi differential operators, An. S¸tiint¸. Univ. ”Ovidius” Constant¸a Ser. Mat. 17 (2009), no. 1, 37-50.
- Eenigenburg, P., Miller, S. S., Mocanu, P. T. and Reade, M. O., On a Briot–Bouquet differential subordination, General inequalities, 3 (Oberwolfach, 1981), 339-348, Internat. Schriftenreihe Numer. Math., 64, Birkhauser, Basel, 1983.
- Frasin, B. A., General integral operator defined by Hadamard product, Mat. Vesnik 62 (2010), no. 2, 127-136.
- Frasin. B. A., Aouf, M. K., Univalence conditions for a new general integral operator, Hacet. J. Math. Stat. 39 (2010), no. 4, 567-575.
- Jabkubowski, Z. J., On the coefficients of starlike functions of some classes, Ann. Polon. Math. 26 (1972), 305-313.
- Pascu, N., An improvement of Becker’s univalence criterion, Proceedings of the Commemorative Session: Simion Stoılow (Brasov, 1987), 43-48, Univ. Brasov, Brasov, 1987.
- Pescar, V., A new generalization of Ahlfor’s and Becker’s criterion of univalence, Bull. Malaysian Math. Soc. (2) 19 (1996), no. 2, 53-54.
- Seenivasagan, N., Sufficient conditions for univalence, Applied Math. E-Notes, 8 (2008), 30-35.
- Seenivasagan, N., Breaz, D., Certain sufficient conditions for univalence, Gen. Math. 15 (2007), no. 4, 7-15.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.