On certain general integral operators of analytic functions

B. A. Frasin

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2012)

  • Volume: 66, Issue: 1
  • ISSN: 0365-1029

Abstract

top
In this paper, we obtain new sufficient conditions for the operators F α 1 , α 2 , . . . , α n , β ( z ) and G α 1 , α 2 , . . . , α n , β ( z ) to be univalent in the open unit disc 𝒰 , where the functions f 1 , f 2 , . . . , f n belong to the classes S * ( a , b ) and 𝒦 ( a , b ) . The order of convexity for the operators  F α 1 , α 2 , . . . , α n , β ( z ) and G α 1 , α 2 , . . . , α n , β ( z ) is also determined. Furthermore, and for β = 1 , we obtain sufficient conditions for the operators F n ( z ) and G n ( z ) to be in the class 𝒦 ( a , b ) . Several corollaries and consequences of the main results are also considered.

How to cite

top

B. A. Frasin. "On certain general integral operators of analytic functions." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 66.1 (2012): null. <http://eudml.org/doc/289831>.

@article{B2012,
abstract = {In this paper, we obtain new sufficient conditions for the operators $F_\{\alpha _1,\alpha _2,...,\alpha _n,\beta \}(z)$ and $G_\{\alpha _1,\alpha _2,...,\alpha _n,\beta \}(z)$ to be univalent in the open unit disc $\mathcal \{U\}$, where the functions $f_1, f_2,..., f_n$ belong to the classes $S^*(a, b)$ and $\mathcal \{K\}(a, b)$. The order of convexity for the operators $F_\{\alpha _1,\alpha _2,...,\alpha _n,\beta \}(z)$ and $G_\{\alpha _1,\alpha _2,...,\alpha _n,\beta \}(z)$ is also determined. Furthermore, and for $\beta = 1$, we obtain sufficient conditions for the operators $F_n(z)$ and $G_n(z)$ to be in the class $\mathcal \{K\}(a, b)$. Several corollaries and consequences of the main results are also considered.},
author = {B. A. Frasin},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Analytic functions; starlike and convex functions; integral operator},
language = {eng},
number = {1},
pages = {null},
title = {On certain general integral operators of analytic functions},
url = {http://eudml.org/doc/289831},
volume = {66},
year = {2012},
}

TY - JOUR
AU - B. A. Frasin
TI - On certain general integral operators of analytic functions
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2012
VL - 66
IS - 1
SP - null
AB - In this paper, we obtain new sufficient conditions for the operators $F_{\alpha _1,\alpha _2,...,\alpha _n,\beta }(z)$ and $G_{\alpha _1,\alpha _2,...,\alpha _n,\beta }(z)$ to be univalent in the open unit disc $\mathcal {U}$, where the functions $f_1, f_2,..., f_n$ belong to the classes $S^*(a, b)$ and $\mathcal {K}(a, b)$. The order of convexity for the operators $F_{\alpha _1,\alpha _2,...,\alpha _n,\beta }(z)$ and $G_{\alpha _1,\alpha _2,...,\alpha _n,\beta }(z)$ is also determined. Furthermore, and for $\beta = 1$, we obtain sufficient conditions for the operators $F_n(z)$ and $G_n(z)$ to be in the class $\mathcal {K}(a, b)$. Several corollaries and consequences of the main results are also considered.
LA - eng
KW - Analytic functions; starlike and convex functions; integral operator
UR - http://eudml.org/doc/289831
ER -

References

top
  1. Ahlfors, L. V., Sufficient conditions for quasiconformal extension, Discontinuous groups and Riemann surfaces (Proc. Conf., Univ. Maryland, College Park, Md., 1973), pp. 23-29. Ann. of Math. Studies, No. 79, Princeton Univ. Press, Princeton, N.J., 1974. 
  2. Becker, J., Lownersche Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen, J. Reine Angew. Math. 255 (1972), 23-43. 
  3. Becker, J., Lownersche Differentialgleichung und Schlichtheitskriterien, Math. Ann. 202 (1973), 321-335. 
  4. Breaz, D., Univalence properties for a general integral operator, Bull. Korean Math. Soc. 46 (2009), no. 3, 439-446. 
  5. Breaz, D., Breaz, N., Two integral operators, Studia Universitatis Babes-Bolyai Math., 47 (2002), no. 3, 13-19. 
  6. Breaz, D., Breaz, N., Univalence conditions for certain integral operators, Studia Universitatis Babes-Bolyai, Mathematica, 47 (2002), no. 2, 9-15. 
  7. Breaz, D., Owa, S., Some extensions of univalent conditions for certain integral operators, Math. Inequal. Appl., 10 (2007), no. 2, 321-325. 
  8. Bulut, S., Univalence preserving integral operators defined by generalized Al- Oboudi differential operators, An. S¸tiint¸. Univ. ”Ovidius” Constant¸a Ser. Mat. 17 (2009), no. 1, 37-50. 
  9. Eenigenburg, P., Miller, S. S., Mocanu, P. T. and Reade, M. O., On a Briot–Bouquet differential subordination, General inequalities, 3 (Oberwolfach, 1981), 339-348, Internat. Schriftenreihe Numer. Math., 64, Birkhauser, Basel, 1983. 
  10. Frasin, B. A., General integral operator defined by Hadamard product, Mat. Vesnik 62 (2010), no. 2, 127-136. 
  11. Frasin. B. A., Aouf, M. K., Univalence conditions for a new general integral operator, Hacet. J. Math. Stat. 39 (2010), no. 4, 567-575. 
  12. Jabkubowski, Z. J., On the coefficients of starlike functions of some classes, Ann. Polon. Math. 26 (1972), 305-313. 
  13. Pascu, N., An improvement of Becker’s univalence criterion, Proceedings of the Commemorative Session: Simion Stoılow (Brasov, 1987), 43-48, Univ. Brasov, Brasov, 1987. 
  14. Pescar, V., A new generalization of Ahlfor’s and Becker’s criterion of univalence, Bull. Malaysian Math. Soc. (2) 19 (1996), no. 2, 53-54. 
  15. Seenivasagan, N., Sufficient conditions for univalence, Applied Math. E-Notes, 8 (2008), 30-35. 
  16. Seenivasagan, N., Breaz, D., Certain sufficient conditions for univalence, Gen. Math. 15 (2007), no. 4, 7-15. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.