Inclusion properties of certain subclasses of analytic functions defined by generalized Salagean operator

M. K. Aouf; A. Shamandy; A. O. Mostafa; S. M. Madian

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2010)

  • Volume: 54, Issue: 1
  • ISSN: 0365-1029

Abstract

top
Let A denote the class of analytic functions with the normalization f ( 0 ) = f ' ( 0 ) - 1 = 0 in the open unit disc U = { z : z < 1 } .  Set f λ n ( z ) = z + k = 2 [ 1 + λ ( k - 1 ) ] n z k ( n N 0 ; λ 0 ; z U ) , and define f λ , μ n in terms of the Hadamard product f λ n ( z ) * f λ , μ n = z ( 1 - z ) μ ( μ > 0 ; z U ) . In this paper, we introduce several subclasses of analytic functions defined by means of the operator I λ , μ n : A A , given by I λ , μ n f ( z ) = f λ , μ n ( z ) * f ( z ) ( f A ; n N 0 ; λ 0 ; μ > 0 ) . Inclusion properties of these classes and the classes involving the generalized Libera integral operator are also considered.

How to cite

top

M. K. Aouf, et al. "Inclusion properties of certain subclasses of analytic functions defined by generalized Salagean operator." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 54.1 (2010): null. <http://eudml.org/doc/289833>.

@article{M2010,
abstract = {Let $A$ denote the class of analytic functions with the normalization $f(0)=f^\{\prime \}(0)-1=0$ in the open unit disc $U=\lbrace z:\left|z\right|<1\rbrace $.  Set \[f\_\{\lambda \}^\{n\}(z)=z+\sum \_\{k=2\}^\{\infty \}[1+\lambda (k-1)]^\{n\}z^\{k\}\quad (n\in N\_\{0\};\ \lambda \ge 0;\ z\in U),\] and define $f_\{\lambda ,\mu \}^\{n\}$ in terms of the Hadamard product \[f\_\{\lambda \}^\{n\}(z)\ast f\_\{\lambda ,\mu \}^\{n\}=\frac\{z\}\{(1-z)^\{\mu \}\}\quad (\mu >0;\ z\in U). \] In this paper, we introduce several subclasses of analytic functions defined by means of the operator $I_\{\lambda ,\mu \}^\{n\}:A\longrightarrow A$, given by \[ I\_\{\lambda ,\mu \}^\{n\}f(z)=f\_\{\lambda ,\mu \}^\{n\}(z)\ast f(z)\quad (f\in A;\ n\in N\_\{0;\}\ \lambda \ge 0;\ \mu >0). \] Inclusion properties of these classes and the classes involving the generalized Libera integral operator are also considered.},
author = {M. K. Aouf, A. Shamandy, A. O. Mostafa, S. M. Madian},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Analytic; Hadamard product; starlike; convex},
language = {eng},
number = {1},
pages = {null},
title = {Inclusion properties of certain subclasses of analytic functions defined by generalized Salagean operator},
url = {http://eudml.org/doc/289833},
volume = {54},
year = {2010},
}

TY - JOUR
AU - M. K. Aouf
AU - A. Shamandy
AU - A. O. Mostafa
AU - S. M. Madian
TI - Inclusion properties of certain subclasses of analytic functions defined by generalized Salagean operator
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2010
VL - 54
IS - 1
SP - null
AB - Let $A$ denote the class of analytic functions with the normalization $f(0)=f^{\prime }(0)-1=0$ in the open unit disc $U=\lbrace z:\left|z\right|<1\rbrace $.  Set \[f_{\lambda }^{n}(z)=z+\sum _{k=2}^{\infty }[1+\lambda (k-1)]^{n}z^{k}\quad (n\in N_{0};\ \lambda \ge 0;\ z\in U),\] and define $f_{\lambda ,\mu }^{n}$ in terms of the Hadamard product \[f_{\lambda }^{n}(z)\ast f_{\lambda ,\mu }^{n}=\frac{z}{(1-z)^{\mu }}\quad (\mu >0;\ z\in U). \] In this paper, we introduce several subclasses of analytic functions defined by means of the operator $I_{\lambda ,\mu }^{n}:A\longrightarrow A$, given by \[ I_{\lambda ,\mu }^{n}f(z)=f_{\lambda ,\mu }^{n}(z)\ast f(z)\quad (f\in A;\ n\in N_{0;}\ \lambda \ge 0;\ \mu >0). \] Inclusion properties of these classes and the classes involving the generalized Libera integral operator are also considered.
LA - eng
KW - Analytic; Hadamard product; starlike; convex
UR - http://eudml.org/doc/289833
ER -

References

top
  1. Al-Oboudi, F. M., On univalent functions defined by a generalized Salagean operator, Internat. J. Math. Math. Sci. 27 (2004), 1429-1436. 
  2. Bernardi, S. D., Convex and starlike univalent functions, Trans. Amer. Math. Soc. 35 (1969), 429-446. 
  3. Choi, J. H., Saigo, M. and Srivastava, H. M., Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl. 276 (2002), 432-445. 
  4. Eenigenburg, P., Miller, S. S., Mocanu, P. T. and Reade, M. O., On a Briot–Bouquet differential subordination, General inequalities, 3 (Oberwolfach, 1981), 339-348, Internat. Schriftenreihe Numer. Math., 64, Birkhauser, Basel, 1983. 
  5. Kim, Y. C., Choi, J. H. and Sugawa, T., Coefficient bounds and convolution properties for certain classes of close-to-convex functions, Proc. Japan Acad. Ser. A Math. Sci. 76 (2000), 95-98. 
  6. Libera, R. J., Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965), 755-758. 
  7. Ma, W. C., Minda, D., An internal geometric characterization of strongly starlike functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 45 (1991), 89-97. 
  8. Miller, S. S., Mocanu, P. T., Differential subordinations and univalent functions, Michigan Math. J. 28 (1981), 157-171. 
  9. Owa, S., Srivastava, H. M., Some applications of the generalized Libera operator, Proc. Japan Acad. Ser. A Math. Sci. 62 (1986), 125-128. 
  10. Salagean, G. S., Subclasses of univalent functions, Complex analysis - fifth 
  11. Romanian-Finnish seminar, Part 1 (Bucharest, 1981), 362-372, Lecture Notes in Math., 1013, Springer, Berlin, 1983. 
  12. Srivastava, H. M., Owa, S. (Editors), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, 1992. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.