Inclusion properties of certain subclasses of analytic functions defined by generalized Salagean operator
M. K. Aouf; A. Shamandy; A. O. Mostafa; S. M. Madian
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2010)
- Volume: 54, Issue: 1
- ISSN: 0365-1029
Access Full Article
topAbstract
topHow to cite
topM. K. Aouf, et al. "Inclusion properties of certain subclasses of analytic functions defined by generalized Salagean operator." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 54.1 (2010): null. <http://eudml.org/doc/289833>.
@article{M2010,
abstract = {Let $A$ denote the class of analytic functions with the normalization $f(0)=f^\{\prime \}(0)-1=0$ in the open unit disc $U=\lbrace z:\left|z\right|<1\rbrace $. Set \[f\_\{\lambda \}^\{n\}(z)=z+\sum \_\{k=2\}^\{\infty \}[1+\lambda (k-1)]^\{n\}z^\{k\}\quad (n\in N\_\{0\};\ \lambda \ge 0;\ z\in U),\]
and define $f_\{\lambda ,\mu \}^\{n\}$ in terms of the Hadamard product \[f\_\{\lambda \}^\{n\}(z)\ast f\_\{\lambda ,\mu \}^\{n\}=\frac\{z\}\{(1-z)^\{\mu \}\}\quad (\mu >0;\ z\in U). \]
In this paper, we introduce several subclasses of analytic functions defined by means of the operator $I_\{\lambda ,\mu \}^\{n\}:A\longrightarrow A$, given by \[ I\_\{\lambda ,\mu \}^\{n\}f(z)=f\_\{\lambda ,\mu \}^\{n\}(z)\ast f(z)\quad (f\in A;\ n\in N\_\{0;\}\ \lambda \ge 0;\ \mu >0). \]
Inclusion properties of these classes and the classes involving the generalized Libera integral operator are also considered.},
author = {M. K. Aouf, A. Shamandy, A. O. Mostafa, S. M. Madian},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Analytic; Hadamard product; starlike; convex},
language = {eng},
number = {1},
pages = {null},
title = {Inclusion properties of certain subclasses of analytic functions defined by generalized Salagean operator},
url = {http://eudml.org/doc/289833},
volume = {54},
year = {2010},
}
TY - JOUR
AU - M. K. Aouf
AU - A. Shamandy
AU - A. O. Mostafa
AU - S. M. Madian
TI - Inclusion properties of certain subclasses of analytic functions defined by generalized Salagean operator
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2010
VL - 54
IS - 1
SP - null
AB - Let $A$ denote the class of analytic functions with the normalization $f(0)=f^{\prime }(0)-1=0$ in the open unit disc $U=\lbrace z:\left|z\right|<1\rbrace $. Set \[f_{\lambda }^{n}(z)=z+\sum _{k=2}^{\infty }[1+\lambda (k-1)]^{n}z^{k}\quad (n\in N_{0};\ \lambda \ge 0;\ z\in U),\]
and define $f_{\lambda ,\mu }^{n}$ in terms of the Hadamard product \[f_{\lambda }^{n}(z)\ast f_{\lambda ,\mu }^{n}=\frac{z}{(1-z)^{\mu }}\quad (\mu >0;\ z\in U). \]
In this paper, we introduce several subclasses of analytic functions defined by means of the operator $I_{\lambda ,\mu }^{n}:A\longrightarrow A$, given by \[ I_{\lambda ,\mu }^{n}f(z)=f_{\lambda ,\mu }^{n}(z)\ast f(z)\quad (f\in A;\ n\in N_{0;}\ \lambda \ge 0;\ \mu >0). \]
Inclusion properties of these classes and the classes involving the generalized Libera integral operator are also considered.
LA - eng
KW - Analytic; Hadamard product; starlike; convex
UR - http://eudml.org/doc/289833
ER -
References
top- Al-Oboudi, F. M., On univalent functions defined by a generalized Salagean operator, Internat. J. Math. Math. Sci. 27 (2004), 1429-1436.
- Bernardi, S. D., Convex and starlike univalent functions, Trans. Amer. Math. Soc. 35 (1969), 429-446.
- Choi, J. H., Saigo, M. and Srivastava, H. M., Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl. 276 (2002), 432-445.
- Eenigenburg, P., Miller, S. S., Mocanu, P. T. and Reade, M. O., On a Briot–Bouquet differential subordination, General inequalities, 3 (Oberwolfach, 1981), 339-348, Internat. Schriftenreihe Numer. Math., 64, Birkhauser, Basel, 1983.
- Kim, Y. C., Choi, J. H. and Sugawa, T., Coefficient bounds and convolution properties for certain classes of close-to-convex functions, Proc. Japan Acad. Ser. A Math. Sci. 76 (2000), 95-98.
- Libera, R. J., Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965), 755-758.
- Ma, W. C., Minda, D., An internal geometric characterization of strongly starlike functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 45 (1991), 89-97.
- Miller, S. S., Mocanu, P. T., Differential subordinations and univalent functions, Michigan Math. J. 28 (1981), 157-171.
- Owa, S., Srivastava, H. M., Some applications of the generalized Libera operator, Proc. Japan Acad. Ser. A Math. Sci. 62 (1986), 125-128.
- Salagean, G. S., Subclasses of univalent functions, Complex analysis - fifth
- Romanian-Finnish seminar, Part 1 (Bucharest, 1981), 362-372, Lecture Notes in Math., 1013, Springer, Berlin, 1983.
- Srivastava, H. M., Owa, S. (Editors), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, 1992.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.