Existence and uniqueness of solutions for a class of degenerate nonlinear elliptic equations
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2016)
- Volume: 70, Issue: 2
- ISSN: 0365-1029
Access Full Article
topAbstract
topHow to cite
topAlbo Carlos Cavalheiro. "Existence and uniqueness of solutions for a class of degenerate nonlinear elliptic equations." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 70.2 (2016): null. <http://eudml.org/doc/289841>.
@article{AlboCarlosCavalheiro2016,
abstract = {In this work we are interested in the existence and uniqueness of solutions for the Navier problem associated to the degenerate nonlinear elliptic equations \begin\{align\} \{\Delta \}(v(x)\, \{\vert \{\Delta \}u\vert \}^\{p-2\}\{\Delta \}u) &-\sum \_\{j=1\}^n D\_j\{\bigl [\}\{\omega \}\_1(x) \mathcal \{A\}\_j(x, u, \{\nabla \}u)\{\bigr ]\}+ b(x,u,\{\nabla \}u)\, \{\omega \}\_2(x)\\ & = f\_0(x) - \sum \_\{j=1\}^nD\_jf\_j(x), \ \ \{\rm in \} \ \ \{\Omega \} \end\{align\}
in the setting of the weighted Sobolev spaces.},
author = {Albo Carlos Cavalheiro},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Degenerate nonlinear elliptic equations; weighted Sobolev spaces},
language = {eng},
number = {2},
pages = {null},
title = {Existence and uniqueness of solutions for a class of degenerate nonlinear elliptic equations},
url = {http://eudml.org/doc/289841},
volume = {70},
year = {2016},
}
TY - JOUR
AU - Albo Carlos Cavalheiro
TI - Existence and uniqueness of solutions for a class of degenerate nonlinear elliptic equations
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2016
VL - 70
IS - 2
SP - null
AB - In this work we are interested in the existence and uniqueness of solutions for the Navier problem associated to the degenerate nonlinear elliptic equations \begin{align} {\Delta }(v(x)\, {\vert {\Delta }u\vert }^{p-2}{\Delta }u) &-\sum _{j=1}^n D_j{\bigl [}{\omega }_1(x) \mathcal {A}_j(x, u, {\nabla }u){\bigr ]}+ b(x,u,{\nabla }u)\, {\omega }_2(x)\\ & = f_0(x) - \sum _{j=1}^nD_jf_j(x), \ \ {\rm in } \ \ {\Omega } \end{align}
in the setting of the weighted Sobolev spaces.
LA - eng
KW - Degenerate nonlinear elliptic equations; weighted Sobolev spaces
UR - http://eudml.org/doc/289841
ER -
References
top- Cavalheiro, A. C., Existence and uniqueness of solutions for some degenerate nonlinear Dirichlet problems, J. Appl. Anal. 19 (2013), 41-54.
- Cavalheiro, A. C., Existence results for Dirichlet problems with degenerated p-Laplacian and p-Biharmonic operators, Appl. Math. E-Notes 13 (2013), 234-242.
- Chipot, M., Elliptic Equations: An Introductory Course, Birkhauser, Berlin, 2009.
- Drabek, P., Kufner, A., Nicolosi, F., Quasilinear Elliptic Equations with Degenerations and Singularities, Walter de Gruyter, Berlin, 1997.
- Fucik, S., John, O., Kufner, A., Function Spaces, Noordhoff International Publ., Leyden, 1977.
- Garcia-Cuerva, J., Rubio de Francia, J. L., Weighted Norm Inequalities and Related Topics, North-Holland, Amsterdam, 1985.
- Gilbarg, D., Trudinger, N. S., Elliptic Partial Equations of Second Order, 2nd Ed., Springer, New York, 1983.
- Heinonen, J., Kilpelainen, T., Martio, O., Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford University Press, Inc., New York, 1993.
- Kufner, A., Weighted Sobolev Spaces, John Wiley & Sons, 1985.
- Muckenhoupt, B., Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226.
- Talbi, M., Tsouli, N., On the spectrum of the weighted p-Biharmonic operator with weight, Mediterr. J. Math. 4 (2007), 73-86.
- Torchinsky, A., Real-Variable Methods in Harmonic Analysis, Academic Press, San Diego, 1986.
- Turesson, B. O., Nonlinear Potential Theory and Weighted Sobolev Spaces, Springer-Verlag, Berlin-Heidelberg-New York, 2000.
- Zeidler, E., Nonlinear Functional Analysis and Its Applications. Vol. I, Springer-Verlag, New York, 1990.
- Zeidler, E., Nonlinear Functional Analysis and Its Applications. Vol. II/B, Springer-Verlag, New York, 1990.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.