Deviation from weak Banach–Saks property for countable direct sums
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2014)
- Volume: 68, Issue: 2
- ISSN: 0365-1029
Access Full Article
topAbstract
topHow to cite
topAndrzej Kryczka. "Deviation from weak Banach–Saks property for countable direct sums." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 68.2 (2014): null. <http://eudml.org/doc/289842>.
@article{AndrzejKryczka2014,
abstract = {We introduce a seminorm for bounded linear operators between Banach spaces that shows the deviation from the weak Banach–Saks property. We prove that if (Xv) is a sequence of Banach spaces and a Banach sequence lattice E has the Banach–Saks property, then the deviation from the weak Banach–Saks property of an operator of a certain class between direct sums E(Xv) is equal to the supremum of such deviations attained on the coordinates Xv. This is a quantitative version for operators of the result for the Köthe–Bochner sequence spaces E(X) that if E has the Banach–Saks property, then E(X) has the weak Banach–Saks property if and only if so has X.},
author = {Andrzej Kryczka},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {},
language = {eng},
number = {2},
pages = {null},
title = {Deviation from weak Banach–Saks property for countable direct sums},
url = {http://eudml.org/doc/289842},
volume = {68},
year = {2014},
}
TY - JOUR
AU - Andrzej Kryczka
TI - Deviation from weak Banach–Saks property for countable direct sums
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2014
VL - 68
IS - 2
SP - null
AB - We introduce a seminorm for bounded linear operators between Banach spaces that shows the deviation from the weak Banach–Saks property. We prove that if (Xv) is a sequence of Banach spaces and a Banach sequence lattice E has the Banach–Saks property, then the deviation from the weak Banach–Saks property of an operator of a certain class between direct sums E(Xv) is equal to the supremum of such deviations attained on the coordinates Xv. This is a quantitative version for operators of the result for the Köthe–Bochner sequence spaces E(X) that if E has the Banach–Saks property, then E(X) has the weak Banach–Saks property if and only if so has X.
LA - eng
KW -
UR - http://eudml.org/doc/289842
ER -
References
top- Banach, S., Saks, S., Sur la convergence forte dans les champs Lp, Studia Math. 2 (1930), 51–57.
- Beauzamy, B., Banach–Saks properties and spreading models, Math. Scand. 44 (1979), 357–384.
- Brunel, A., Sucheston, L., On B-convex Banach spaces, Math. Systems Theory 7 (1974), 294–299.
- Erdös, P., Magidor, M., A note on regular methods of summability and the Banach– Saks property, Proc. Amer. Math. Soc. 59 (1976), 232–234.
- Krassowska, D., Płuciennik, R., A note on property (H) in Köthe–Bochner sequence spaces, Math. Japon. 46 (1997), 407–412.
- Krein, S. G., Petunin, Yu. I., Semenov, E. M., Interpolation of linear operators, Translations of Mathematical Monographs, 54. American Mathematical Society, Providence, R.I., 1982.
- Kryczka, A., Alternate signs Banach–Saks property and real interpolation of operators, Proc. Amer. Math. Soc. 136 (2008), 3529–3537.
- Kryczka, A., Mean separations in Banach spaces under abstract interpolation and extrapolation, J. Math. Anal. Appl. 407 (2013), 281–289.
- Lin, P.-K., Köthe–Bochner function spaces, Birkhäuser Boston, Inc., Boston, MA, 2004.
- Lindenstrauss, J., Tzafriri, L., Classical Banach spaces. II. Function spaces, Springer- Verlag, Berlin–New York, 1979.
- Mastyło, M., Interpolation spaces not containing l1, J. Math. Pures Appl. 68 (1989), 153–162.
- Partington, J. R., On the Banach–Saks property, Math. Proc. Cambridge Philos. Soc. 82 (1977), 369–374.
- Rosenthal, H. P., Weakly independent sequences and the Banach–Saks property, Bull. London Math. Soc. 8 (1976), 22–24.
- Szlenk, W., Sur les suites faiblement convergentes dans l’espace L, Studia Math. 25 (1965), 337–341.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.