Some framed f -structures on transversally Finsler foliations

Cristian Ida

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2011)

  • Volume: 65, Issue: 1
  • ISSN: 0365-1029

Abstract

top
Some problems concerning to Liouville distribution and framed f -structures are studied on the normal bundle of the lifted Finsler foliation to its normal bundle. It is shown that the Liouville distribution of transversally Finsler foliations is an integrable one and some natural framed f ( 3 , ε ) -structures of corank 2 exist on the normal bundle of the lifted Finsler foliation.

How to cite

top

Cristian Ida. "Some framed $f$-structures on transversally Finsler foliations." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 65.1 (2011): null. <http://eudml.org/doc/289845>.

@article{CristianIda2011,
abstract = {Some problems concerning to Liouville distribution and framed $f$-structures are studied on the normal bundle of the lifted Finsler foliation to its normal bundle. It is shown that the Liouville distribution of transversally Finsler foliations is an integrable one and some natural framed $f(3,\varepsilon )$-structures of corank 2 exist on the normal bundle of the lifted Finsler foliation.},
author = {Cristian Ida},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Transversally Finsler foliation; Liouville distribution; framed f-structures},
language = {eng},
number = {1},
pages = {null},
title = {Some framed $f$-structures on transversally Finsler foliations},
url = {http://eudml.org/doc/289845},
volume = {65},
year = {2011},
}

TY - JOUR
AU - Cristian Ida
TI - Some framed $f$-structures on transversally Finsler foliations
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2011
VL - 65
IS - 1
SP - null
AB - Some problems concerning to Liouville distribution and framed $f$-structures are studied on the normal bundle of the lifted Finsler foliation to its normal bundle. It is shown that the Liouville distribution of transversally Finsler foliations is an integrable one and some natural framed $f(3,\varepsilon )$-structures of corank 2 exist on the normal bundle of the lifted Finsler foliation.
LA - eng
KW - Transversally Finsler foliation; Liouville distribution; framed f-structures
UR - http://eudml.org/doc/289845
ER -

References

top
  1. Abate, M., Patrizio, G., Finsler Metrics - A Global Approach, Lecture Notes in Math., 1591, Springer-Verlag, Berlin, 1994. 
  2. Anastasiei, M., A framed f-structure on tangent bundle of a Finsler space, An. Univ. Bucuresti, Mat.-Inf., 49 (2000), 3-9. 
  3. Bao, D., Chern, S. S. and Shen, Z., An Introduction to Riemannian Finsler Geometry, Graduate Texts in Math., 200, Springer-Verlag, New York, 2000. 
  4. Bejancu, A., Farran, H. R., On the vertical bundle of a pseudo-Finsler manifold, Int. J. Math. Math. Sci. 22 (3) (1997), 637-642. 
  5. Gırtu, M., An almost paracontact structure on the indicatrix bundle of a Finsler space, Balkan J. Geom. Appl. 7(2) (2002), 43-48. 
  6. Gırtu, M., A framed f ( 3 , - 1 ) -structure on the tangent bundle of a Lagrange space, Demonstratio Math. 37(4) (2004), 955-961. 
  7. Hasegawa, I., Yamaguchi, K. and Shimada, H., Sasakian structures on Finsler manifolds, Antonelli, P. L., Miron R. (eds.), Lagrange and Finsler Geometry, Kluwer Acad. Publ., Dordrecht, 1996, 75-80. 
  8. Miernowski, A., A note on transversally Finsler foliations, Ann. Univ. Mariae Curie-Skłodowska Sect. A 60 (2006), 57-64. 
  9. Miernowski, A., Mozgawa, W., Lift of the Finsler foliations to its normal bundle, Differential Geom. Appl. 24 (2006), 209-214. 
  10. Mihai, I., Rosca, R. and Verstraelen, L., Some aspects of the differential geometry of vector fields, PADGE, Katholieke Univ. Leuven, vol. 2 (1996). 
  11. Miron, R., Anastasiei, M., The Geometry of Lagrange Spaces: Theory and Applications, Kluwer Acad. Publ., Dordrecht, 1994. 
  12. Popescu, P., Popescu, M., Lagrangians adapted to submersions and foliations, Differential Geom. Appl. 27 (2009), 171-178. 
  13. Singh, K. D., Singh, R., Some f ( 3 , ε ) -structure manifold, Demonstratio Math. 10 (3-4) (1977), 637-645. 
  14. Vaisman, I., Lagrange geometry on tangent manifolds, Int. J. Math. Math. Sci. 51 (2003), 3241-3266. 
  15. Yano, K., On a structure defined by a tensor field of type (1, 1) satisfying f 3 + f = 0 , Tensor (N.S.) 14 (1963), 99-109. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.