An Elliptic Boundary Value Problem with Unbounded Coefficients in a Half Space

Antonio Bove; Bruno Franchi; Enrico Obrecht

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti (1978)

  • Volume: 65, Issue: 6, page 265-268
  • ISSN: 0392-7881

How to cite

top

Bove, Antonio, Franchi, Bruno, and Obrecht, Enrico. "An Elliptic Boundary Value Problem with Unbounded Coefficients in a Half Space." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 65.6 (1978): 265-268. <http://eudml.org/doc/289895>.

@article{Bove1978,
author = {Bove, Antonio, Franchi, Bruno, Obrecht, Enrico},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
language = {eng},
month = {12},
number = {6},
pages = {265-268},
publisher = {Accademia Nazionale dei Lincei},
title = {An Elliptic Boundary Value Problem with Unbounded Coefficients in a Half Space},
url = {http://eudml.org/doc/289895},
volume = {65},
year = {1978},
}

TY - JOUR
AU - Bove, Antonio
AU - Franchi, Bruno
AU - Obrecht, Enrico
TI - An Elliptic Boundary Value Problem with Unbounded Coefficients in a Half Space
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1978/12//
PB - Accademia Nazionale dei Lincei
VL - 65
IS - 6
SP - 265
EP - 268
LA - eng
UR - http://eudml.org/doc/289895
ER -

References

top
  1. BAGIROV, L. A. - FEĬGIN, V. I. (1973) - Boundary Value Problems for Elliptic Equations in Domains with an Unbounded Boundary (Russian), «Dokl. Akad. Nauk SSSR», 211, 23-26; Engl. transl.: «Soviet Math. Dokl.», 14 , 940-944. MR330757
  2. BEALS, R. (1975) - A General Calculus of Pseudodifferential Operators, «Duke Math. J.», 42, 1-42. Zbl0343.35078MR367730
  3. BOVE, A., FRANCHI, B. e OBRECHT, E. - An Initial Boundary Value Problem with Mixed Lateral Conditions for Heat Equation, to appear in «Ann. Mat. Pura Appl.». Zbl0421.35036MR554781DOI10.1007/BF02412008
  4. BOVE, A., FRANCHI, B. e OBRECHT, E. - A Boundary Value Problem for Elliptic Equations with Polynomial Coefficients in a Half Space, I-II, to appear in «Boll. Un. Mat. Ital.». Zbl0484.35035MR629412
  5. HÖRMANDER, L. (1969) - Linear Partial Differential Operators, 3rd ed., Springer, Berlin. MR404822
  6. HÖRMANDER, L. (1966) - Pseudo-Differential Operators and Non-Elliptic Boundary Value Problems, «Ann. of Math.», 83, 129-209. MR233064DOI10.2307/1970473
  7. HÖRMANDER, L. (1967) - Pseudo-Differential Operators and Hypoelliptic Equations, «Proc. Symp. Pure Math.», 10, 138-183, Amer. Math. Soc., Providence, R.I. MR383152
  8. MATARASSO, S. (1973) - Sul problema di Dirichlet in un dominio di frontiera non limitata, «Ricerche Mat.», 22, 245-281. Zbl0291.35030MR369903
  9. PARENTI, C. (1972) - Un problema ai limiti ellittico in un dominio non limitato, «Ann. Mat. Pura Appl.» (4), 93, 391-406. Zbl0291.35071MR437918DOI10.1007/BF02412029
  10. RABINOVIČ, V. S. (1972) - Pseudodifferential Operators on a Class of Non-Compact Manifolds (Russian), «Mat. Sbornik», 89 (131), 46-60; Engl. transl.: «Math. USSR-Sb.», 18, 45-59. MR324486
  11. SŬBIN, M. A. (1978) - Pseudodifferential Operators and Spectral Theory (Russian), Nauka, Moscow. MR509034
  12. TRIEBEL, H. (1969) - Singuläre elliptische Differentialgleichungen und Interpolatiossätze für Sobolev - Slobodeckij Räume mit Gewichtsfunktionen, «Arch. Rational Mech. Anal.», 32, 113-134. Zbl0167.44401MR238072DOI10.1007/BF00247677

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.