Sufficient conditions for nonoscillation of forced n-th order retarded functional differential equations

Lu-San Chen; Fong-Ming Yu

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti (1978)

  • Volume: 65, Issue: 3-4, page 100-103
  • ISSN: 0392-7881

How to cite

top

Chen, Lu-San, and Yu, Fong-Ming. "Sufficient conditions for nonoscillation of forced n-th order retarded functional differential equations." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 65.3-4 (1978): 100-103. <http://eudml.org/doc/289998>.

@article{Chen1978,
author = {Chen, Lu-San, Yu, Fong-Ming},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
language = {eng},
month = {10},
number = {3-4},
pages = {100-103},
publisher = {Accademia Nazionale dei Lincei},
title = {Sufficient conditions for nonoscillation of forced n-th order retarded functional differential equations},
url = {http://eudml.org/doc/289998},
volume = {65},
year = {1978},
}

TY - JOUR
AU - Chen, Lu-San
AU - Yu, Fong-Ming
TI - Sufficient conditions for nonoscillation of forced n-th order retarded functional differential equations
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1978/10//
PB - Accademia Nazionale dei Lincei
VL - 65
IS - 3-4
SP - 100
EP - 103
LA - eng
UR - http://eudml.org/doc/289998
ER -

References

top
  1. CHEN, LU-SAN (1976) - Sufficient conditions for nonoscillation of n-th order nonlinear differential equations, «Rend. Accad. Naz. Lincei», 60, 27-31. Zbl0367.34026MR481248
  2. CHEN, LU-SAN, YEH, CHEH-CHIH and LIN, JINN-TEIN (1978) - Asymptotic behavior of solutions of functional n-th order differential equations, «Bull. London Math. Soc.», 1O, 186-190. Zbl0412.34069MR499600DOI10.1112/blms/10.2.186
  3. GRAEF, J. R. and SPIKES, P. W. (1975) - Sufficient conditions for the equation ( a ( t ) x ( t ) ) + h ( t , x ( t ) , x ( t ) ) + q ( t ) f ( x ( t ) , x ( t ) ) = e ( t , x ( t ) , x ( t ) ) to be nonoscillatory, «Funkcialaj Ekvacioj», 18, 35-40. Zbl0331.34030MR385234
  4. GRAEF, J. R. (1974) - Continuity boundedness and asymptotic behavior of solutions x ′′ + q ( t ) f ( x ) = r ( t ) , «Ann. Mat. Pura Appl.», 101, 307-320. Zbl0296.34027MR361274DOI10.1007/BF02417110
  5. GRAEF, J. R. (1974) - A nonoscillation result for second order ordinary differential equations, «Rend. Accad. Sci. Fis. Mat. Napoli», (4) 41, 3-12. MR486795
  6. HAMMETT, M. E. (1971) - Nonoscillation properties of a nonlinear differential equation, «Proc. Amer. Math. Soc.», 30, 92-96. Zbl0215.15001MR279384DOI10.2307/2038229
  7. LONDEN, S. (1973) - Some nonoscillation theorems for a second order nonlinear differential equations, «SIAM J. Math. Anal.», 4, 460-465. Zbl0258.34036MR333342DOI10.1137/0504041
  8. SINGH, B. (1975) - Nonoscillation of forced fourth order retarded equations, «SIAM J. Appl. Math.», 28, 265-269. Zbl0294.34051MR361376DOI10.1137/0128021
  9. SINGH, B. (1977) - Forced nonoscillations in second order functional equations, «Hiroshima Math. J.», 7, 657-665. Zbl0411.34042MR499608

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.