Gravitational field theory for the continuum: second order field equations
- Volume: 64, Issue: 6, page 603-609
- ISSN: 0392-7881
Access Full Article
topAbstract
topHow to cite
topSpinelli, Giancarlo. "Gravitational field theory for the continuum: second order field equations." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 64.6 (1978): 603-609. <http://eudml.org/doc/290014>.
@article{Spinelli1978,
author = {Spinelli, Giancarlo},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
language = {eng},
month = {6},
number = {6},
pages = {603-609},
publisher = {Accademia Nazionale dei Lincei},
title = {Gravitational field theory for the continuum: second order field equations},
url = {http://eudml.org/doc/290014},
volume = {64},
year = {1978},
}
TY - JOUR
AU - Spinelli, Giancarlo
TI - Gravitational field theory for the continuum: second order field equations
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1978/6//
PB - Accademia Nazionale dei Lincei
VL - 64
IS - 6
SP - 603
EP - 609
LA - eng
UR - http://eudml.org/doc/290014
ER -
References
top- See for example WHEELER, J.A., in The Physicist's Conception of Nature, Dirac 70th anniversary volume (Dordrecht and Boston).
- THIRRING, W. (1961) - «Ann. Phys. (N.Y.)», 16, 96. See also SEXL, R. U. (1967) - «Fortschr. Phys.», 15, 269. MR135564DOI10.1016/0003-4916(61)90182-8
- DESER, S. (1970) - «Gen. Relativ. Gravit.», 1, 9. MR391862
- CAVALIERI, G. and SPINELLI, G. (1975) - «Phys. Rev.», 12 D, 2203. MR475612DOI10.1103/PhysRevD.12.2203
- CAVALIERI, G. and SPINELLI, G. (1977) - «Nuovo Cimento», 39 B, 93.
- CATTANEO, C. (1973) - «Boll. U.M.I.», 8 Suppl, fasc. 2, 49.
- We employ here point transformations, not to be confused with coordinate transformations. See for instance, PLYBON, F. (1971) - «Journ. Math. Phys.», 12, 57.
- CAVALIERI, G. and SPINELLI, G. (1977) - «Nuovo Cimento», 39 B, 87.
- LANDAU, L. D. and LIFSHITZ, E. M. (1962) - The Classical Theory of Fields, second edition (Oxford, 1962), Sect. 94. Zbl0178.28704MR143451
- CAVALIERI, G. and SPINELLI, G. (1975) - «Phys. Rev.», 12 D, 2200. MR475612DOI10.1103/PhysRevD.12.2203
- Directly by the definition of the deformation tensor. See for example LANDAU, L. D. and LIFSHITZ, E. M. (1959) - Theory of Elasticity, (London) Chapt. 1. MR106584
- Parentheses containing two indices, denote symmetrization, e.g. . The traces of tensor are written by suppresing the repeated indices e.g. . Finally is the d'Alembertian operator i.e. .
- WISS, W. (1965) - «Helv. Phys. Acta», 38, 469.
- DICKE, R. H. (1964) - The Theoretical Significance of Experimental Relativity, (New York, N.Y.). Zbl0148.46006MR189749
- As shown in Ref. [2] an atom put in the gravitational field, undergoes, in the linear approximation, a deformation given by a tensor . It is the same deformation to which real rods and clocks (made out of atoms) are subjected, so that a real observer does not measure a pseudo-Euclidean but a Riemannian space-time. Taking into account that the matter is made out of atoms, all the objects are deformed by gravity in the unrenormalized picture. Hence, in such space-time a variation causes an increase of the deformation tensor equal to .
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.