Sui divisori di prima specie di una varietà algebrica non singolare

Marino Palleschi

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti (1978)

  • Volume: 64, Issue: 4, page 367-373
  • ISSN: 0392-7881

Abstract

top
In a complex projective space we consider a non-singular algebraic variety V d of dimension d 2 . | X | denotes a complete ample linear system on V d and X m 1 , X m 2 , , X m q denote q d 1 non-singular hypersurfaces belonging to q positive multiples | m 1 X | , , | m q X | of the linear system | X | . We suppose every subvariety V d - i = j = 1 i X m j ( i = 1 , 2 , , q ) is non singular and has a regular dimension d i . In this case the subvariety V d - q = j = 1 q X m j is called a quasi-characteristic variety of index q of the system | X | . A divisor A of V d is said to be q -times of the first kind mod | X | if for each relative integer l the complete linear system | l X A | , belonging to V d , cuts out a complete system on every quasi-characteristic variety V d - q of the system | X | . The above conditions can be reduced. In fact if for each l the complete system | l X A | cuts out a complete system on a fixed quasi-characteristic variety of index q of the system | X | , then the complete system | l X - A | cuts out a complete system on any quasi-characteristic variety of index p q of the system | X | . We denote with H q ( V d , 𝒪 ( D ) ) the q -th cohomology module of V d with coefficients in the sheaf 𝒪 ( D ) of germs of meromorphic functions which are multiples of the divisor D . With the previous notations, a characteristic condition for A to be q -times of the first kind mod | X | is that H p ( V d , ( 𝒪 ) ( l X - A ) ) = 0 , for each integer l , p = 1 , 2 , , q . A characteristic condition for A to be q -times of the first kind mod a suitable multiple of every ample linear system is that H p ( V d , 𝒪 ( - A ) ) = ( 0 ) , ( p = 1 , 2 , , q ) . We recall that the theory of divisors of the first kind was introduced and developed with geometrical language and instruments by Marchionna (cfr. [6], [7]). In this paper (and in the following Note II with the same title) we reconstruct the whole theory in an independent way, by employing cohomology theory.

How to cite

top

Palleschi, Marino. "Sui divisori di prima specie di una varietà algebrica non singolare." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 64.4 (1978): 367-373. <http://eudml.org/doc/290060>.

@article{Palleschi1978,
author = {Palleschi, Marino},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
language = {ita},
month = {4},
number = {4},
pages = {367-373},
publisher = {Accademia Nazionale dei Lincei},
title = {Sui divisori di prima specie di una varietà algebrica non singolare},
url = {http://eudml.org/doc/290060},
volume = {64},
year = {1978},
}

TY - JOUR
AU - Palleschi, Marino
TI - Sui divisori di prima specie di una varietà algebrica non singolare
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1978/4//
PB - Accademia Nazionale dei Lincei
VL - 64
IS - 4
SP - 367
EP - 373
LA - ita
UR - http://eudml.org/doc/290060
ER -

References

top
  1. HODGE, W. V. D. (1955) - A note on the Riemann-Roch Theorem, «Journal London Math. Soc.», 30, 291-296. Zbl0065.14101MR78010DOI10.1112/jlms/s1-30.3.291
  2. KODAIRA, K. (1953) - On cohomology groups of compact analytic varieties with coefficients in some analytic faisceaux, «Proc. Nat. Acad. Sc. U.S.A.», 39, 865-868. Zbl0051.14502MR63120
  3. KODAIRA, K. (1954) - Some results in the transcendental theory of algebraic varieties, «Annals of Math.», 59, 86-133. Zbl0059.14605MR66690DOI10.2307/1969834
  4. KODAIRA, K. e SPENCER, D. C. (1953) - Divisor class groups on algebraic varieties, «Proc. Nat. Acad. Sc. U.S.A.». 39. 872-877. Zbl0051.14601MR63122
  5. MARCHIONNA, E. (1961) - Sui multipli del sistema delle sezioni iperpiane di una varietà algebrica non singolare, «Annali di Matem.». ser. IV, 54, 159-199. Zbl0103.14201MR133722DOI10.1007/BF02415350
  6. MARCHIONNA, E. (1962) - Sui multipli dei sistemi lineari d'ipersuperficie appartenenti ad una varietà algebrica pluriregolare, «Rendiconti di Matematica», (3-4), 21, 322-353. Zbl0113.36503MR149357
  7. MARCHIONNA, E. (1971) - Sui divisori di prima specie di una varietà algebrica, «Symposia Mathematica» (Ist. Naz. Alta Matematica), vol. V, Academic Press, 439-456. Zbl0212.53803MR276235
  8. SERRE, J. P. (1955) - Un théorème de dualité, «Comment. Math. Helv.», 29, 9-26. Zbl0067.16101MR67489DOI10.1007/BF02564268
  9. SERRE, J. P. (1955) - Faisceaux algébriques cohérents, «Annals of Mathem.», 61, 197-278. MR68874DOI10.2307/1969915

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.