Stabilization and controllability for a class of control systems

Luciano Pandolfi

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti (1978)

  • Volume: 64, Issue: 2, page 130-136
  • ISSN: 0392-7881

How to cite

top

Pandolfi, Luciano. "Stabilization and controllability for a class of control systems." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 64.2 (1978): 130-136. <http://eudml.org/doc/290163>.

@article{Pandolfi1978,
author = {Pandolfi, Luciano},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
language = {eng},
month = {2},
number = {2},
pages = {130-136},
publisher = {Accademia Nazionale dei Lincei},
title = {Stabilization and controllability for a class of control systems},
url = {http://eudml.org/doc/290163},
volume = {64},
year = {1978},
}

TY - JOUR
AU - Pandolfi, Luciano
TI - Stabilization and controllability for a class of control systems
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1978/2//
PB - Accademia Nazionale dei Lincei
VL - 64
IS - 2
SP - 130
EP - 136
LA - eng
UR - http://eudml.org/doc/290163
ER -

References

top
  1. CONTI, R. (1977) - Linear Differential Equations and Control, Institutiones Mathematicae, Vol. I, Academic Press, New York. MR513642
  2. CURTAIN, R. (1975) - The Infinite Dimensional Riccati Equation with Application to Affine Hereditary Differential Systems, «SIAM J. Control», 13, 48-88. MR402571
  3. KOLMOGOROF, A. N. and FOMIN, S. V. (1974) - Elements de la Théorie des fonctions et de l'Analyse Fonctionelles, Editions MIR, Moscow. MR367598
  4. PANDOLFI, L. - Stabilization of Control Processes in Hilbert Spaces, To appear on «Roy. Math. Soc. of Edinburg», ser. A. MR516416DOI10.1017/S0308210500010581
  5. PANDOLFI, L. - Non Autonomous Regulator Problem in Hilbert Spaces, To appear, «J. Opt. Theory Appl.». MR567796DOI10.1007/BF00935498
  6. ZABCZYK, J. (1976) - Complete Stabilizability Implies Exact Controllability, Seminarul de Ecuatii Functional, Universitatea din Timisoara, Romania. 
  7. SLEMROD, M. (1974) - A note ou complete controllability and stabilizability for linear control systems in Hilbert space, «SIAM J. Control», 12, 500-508. Zbl0254.93006MR353107

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.