Sur Une Formule de Castelnuovo Pour Les Espaces Multisécants

Patrick Le Barz

Bollettino dell'Unione Matematica Italiana (2007)

  • Volume: 10-B, Issue: 2, page 381-387
  • ISSN: 0392-4033


Let v k be the number of ( k - 2 ) -dimensional subspaces of P 2 k - 2 which are k -secant to a curve C (of degree n and genus g ). Castelnuovo (1889) gave a formula for v k (see [2]); one has a modern proof in the monograph [1]. Here we give explicitly the generating function of the series k 0 v k t k Z [ [ t ] ] , without using Castelnuovo's results.

How to cite


Le Barz, Patrick. "Sur Une Formule de Castelnuovo Pour Les Espaces Multisécants." Bollettino dell'Unione Matematica Italiana 10-B.2 (2007): 381-387. <>.

author = {Le Barz, Patrick},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {fre},
month = {6},
number = {2},
pages = {381-387},
publisher = {Unione Matematica Italiana},
title = {Sur Une Formule de Castelnuovo Pour Les Espaces Multisécants},
url = {},
volume = {10-B},
year = {2007},

AU - Le Barz, Patrick
TI - Sur Une Formule de Castelnuovo Pour Les Espaces Multisécants
JO - Bollettino dell'Unione Matematica Italiana
DA - 2007/6//
PB - Unione Matematica Italiana
VL - 10-B
IS - 2
SP - 381
EP - 387
LA - fre
UR -
ER -


  1. ARBARELLO, E. - CORNALBA, M. - GRIFFITHS, P. - HARRIS, J., Geometry of Algebraic Curves, vol. I, Springer-Verlag (1985). Zbl0559.14017MR770932DOI10.1007/978-1-4757-5323-3
  2. CASTELNUOVO, G., Una applicazione della Geometria Enumerativa alle curve algebriche, Rendiconti Palermo III (1889), 27-37. MR3622298
  3. DONALDSON, S., Instantons in Yang-Mills theory, The interface of Mathematics and Particle Physics, Clarendon Press, Oxford (1990), 59-75. MR1103130
  4. FULTON, W. - YOUNG TABLEAUX, London Math. Soc. Student Texts35, Cambridge University Press (1997). MR1464693
  5. HARTSHORNE, R., Algebraic Geometry, Graduate Texts in Mathematics, Springer-Verlag (1977). MR463157
  6. LE BARZ, P., Formules pour les espaces multisécants aux courbes algébriques, C. R. Ac. Sc. Paris, Ser. I, 340 (2005), 743-746. Zbl1073.14069MR2141062DOI10.1016/j.crma.2005.04.002
  7. LE BARZ, P., Formules pour les trisécantes des surfaces algébriques, L'Enseigne- ment Mathématique, 33 (1987), 1-66. MR896383
  8. LEHN, M., Chern classes of tautological sheaves on Hilbert schemes of points on surfaces, Inv. Math., 136 (1999), 157-207. Zbl0919.14001MR1681097DOI10.1007/s002220050307
  9. SEMPLE, J., ROTH, L., Introduction to Algebraic Geometry, Clarendon Press, Oxford (1949). Zbl0041.27903MR34048
  10. TIKHOMIROV, A. - TROSHINA, T., Top Segre class of a standard vector bundle on the Hilbert scheme H i l b 4 S of a surface S, Algebraic geometry and its applications Yaroslavl', Aspects of Maths. vol. E25, Vieweg-Verlag (1994), 205-226. Zbl0819.14004MR1282030
  11. VASSALLO, V., Justification de la méthode fonctionnelle pour les courbes gauches, Acta Mat., 172 (1994), 257-297. Zbl0842.14039MR1278112DOI10.1007/BF02392647

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.