Sur Une Formule de Castelnuovo Pour Les Espaces Multisécants

Patrick Le Barz

Bollettino dell'Unione Matematica Italiana (2007)

  • Volume: 10-B, Issue: 2, page 381-387
  • ISSN: 0392-4041

Abstract

top
Let v k be the number of ( k - 2 ) -dimensional subspaces of P 2 k - 2 which are k -secant to a curve C (of degree n and genus g ). Castelnuovo (1889) gave a formula for v k (see [2]); one has a modern proof in the monograph [1]. Here we give explicitly the generating function of the series k 0 v k t k Z [ [ t ] ] , without using Castelnuovo's results.

How to cite

top

Le Barz, Patrick. "Sur Une Formule de Castelnuovo Pour Les Espaces Multisécants." Bollettino dell'Unione Matematica Italiana 10-B.2 (2007): 381-387. <http://eudml.org/doc/290358>.

@article{LeBarz2007,
author = {Le Barz, Patrick},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {fre},
month = {6},
number = {2},
pages = {381-387},
publisher = {Unione Matematica Italiana},
title = {Sur Une Formule de Castelnuovo Pour Les Espaces Multisécants},
url = {http://eudml.org/doc/290358},
volume = {10-B},
year = {2007},
}

TY - JOUR
AU - Le Barz, Patrick
TI - Sur Une Formule de Castelnuovo Pour Les Espaces Multisécants
JO - Bollettino dell'Unione Matematica Italiana
DA - 2007/6//
PB - Unione Matematica Italiana
VL - 10-B
IS - 2
SP - 381
EP - 387
LA - fre
UR - http://eudml.org/doc/290358
ER -

References

top
  1. ARBARELLO, E. - CORNALBA, M. - GRIFFITHS, P. - HARRIS, J., Geometry of Algebraic Curves, vol. I, Springer-Verlag (1985). Zbl0559.14017MR770932DOI10.1007/978-1-4757-5323-3
  2. CASTELNUOVO, G., Una applicazione della Geometria Enumerativa alle curve algebriche, Rendiconti Palermo III (1889), 27-37. MR3622298
  3. DONALDSON, S., Instantons in Yang-Mills theory, The interface of Mathematics and Particle Physics, Clarendon Press, Oxford (1990), 59-75. MR1103130
  4. FULTON, W. - YOUNG TABLEAUX, London Math. Soc. Student Texts35, Cambridge University Press (1997). MR1464693
  5. HARTSHORNE, R., Algebraic Geometry, Graduate Texts in Mathematics, Springer-Verlag (1977). MR463157
  6. LE BARZ, P., Formules pour les espaces multisécants aux courbes algébriques, C. R. Ac. Sc. Paris, Ser. I, 340 (2005), 743-746. Zbl1073.14069MR2141062DOI10.1016/j.crma.2005.04.002
  7. LE BARZ, P., Formules pour les trisécantes des surfaces algébriques, L'Enseigne- ment Mathématique, 33 (1987), 1-66. MR896383
  8. LEHN, M., Chern classes of tautological sheaves on Hilbert schemes of points on surfaces, Inv. Math., 136 (1999), 157-207. Zbl0919.14001MR1681097DOI10.1007/s002220050307
  9. SEMPLE, J., ROTH, L., Introduction to Algebraic Geometry, Clarendon Press, Oxford (1949). Zbl0041.27903MR34048
  10. TIKHOMIROV, A. - TROSHINA, T., Top Segre class of a standard vector bundle on the Hilbert scheme H i l b 4 S of a surface S, Algebraic geometry and its applications Yaroslavl', Aspects of Maths. vol. E25, Vieweg-Verlag (1994), 205-226. Zbl0819.14004MR1282030
  11. VASSALLO, V., Justification de la méthode fonctionnelle pour les courbes gauches, Acta Mat., 172 (1994), 257-297. Zbl0842.14039MR1278112DOI10.1007/BF02392647

NotesEmbed ?

top

You must be logged in to post comments.