A Constructive Boolean Central Limit Theorem

Anis Ben Ghorbal; Vitonofrio Crismale; Yun Gang Lu

Bollettino dell'Unione Matematica Italiana (2007)

  • Volume: 10-B, Issue: 3, page 593-604
  • ISSN: 0392-4033

Abstract

top
We give a construction of the creation, annihilation and number processes on the Boolean Fock space by means of a quantum central limit theorem starting from creation, annihilation and number processes with discrete time.

How to cite

top

Ben Ghorbal, Anis, Crismale, Vitonofrio, and Lu, Yun Gang. "A Constructive Boolean Central Limit Theorem." Bollettino dell'Unione Matematica Italiana 10-B.3 (2007): 593-604. <http://eudml.org/doc/290361>.

@article{BenGhorbal2007,
abstract = {We give a construction of the creation, annihilation and number processes on the Boolean Fock space by means of a quantum central limit theorem starting from creation, annihilation and number processes with discrete time.},
author = {Ben Ghorbal, Anis, Crismale, Vitonofrio, Lu, Yun Gang},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {593-604},
publisher = {Unione Matematica Italiana},
title = {A Constructive Boolean Central Limit Theorem},
url = {http://eudml.org/doc/290361},
volume = {10-B},
year = {2007},
}

TY - JOUR
AU - Ben Ghorbal, Anis
AU - Crismale, Vitonofrio
AU - Lu, Yun Gang
TI - A Constructive Boolean Central Limit Theorem
JO - Bollettino dell'Unione Matematica Italiana
DA - 2007/10//
PB - Unione Matematica Italiana
VL - 10-B
IS - 3
SP - 593
EP - 604
AB - We give a construction of the creation, annihilation and number processes on the Boolean Fock space by means of a quantum central limit theorem starting from creation, annihilation and number processes with discrete time.
LA - eng
UR - http://eudml.org/doc/290361
ER -

References

top
  1. ACCARDI, L. - BACH, A., The harmonic oscillator as quantum central limit theorem for monotone noise, preprint (1985). Zbl0553.60031
  2. ACCARDI, L. - BEN GHORBAL, A. - CRISMALE, V. - LU, Y. G., Projective independence and quantum central limit theorem, preprint (2007). MR2351531
  3. ACCARDI, L. - CRISMALE, V. - LU, Y. G., Constructive universal central limit theorems based on interacting Fock spaces, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 8, no. 4 (2005), 631-650. Zbl1079.60501MR2184087DOI10.1142/S021902570500213X
  4. ACCARDI, L. - HASHIMOTO, Y. - OBATA, N., Notions of independence related to the free group, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 1, no. 2 (1998), 201-220. Zbl0913.46057MR1628248DOI10.1142/S0219025798000132
  5. BEN GHORBAL, A. - SCHÜRMANN, M., Noncommutative notions of stochastic independence, Math. Proc. Cambridge Philos. Soc., 133, no. 3 (2002), 531-561. Zbl1028.46094MR1919720DOI10.1017/S0305004102006072
  6. BEN GHORBAL, A. - SCHÜRMANN, M., Quantum stochastic calculus on Boolean Fock Space, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 7, no. 4 (2004), 631-650. Zbl1077.81061MR2105916DOI10.1142/S0219025704001815
  7. BOZEJKO, M., Uniformly bounded representations of free groups, J. Reine Angew. Math., 377 (1987), 170-186. Zbl0604.43004MR887407DOI10.1515/crll.1987.377.170
  8. DE GIOSA, M. - LU, Y. G., The free creation and annihilation operators as the central limit of the quantum Bernoulli process, Random Oper. Stoch. Eq.5, no. 3 (1997), 227- 236. Zbl0927.60066MR1483010DOI10.1515/rose.1997.5.3.227
  9. LENCZEWSKI, R., Stochastic calculus on multiple symmetric Fock spaces, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 4, no. 2 (2001), 309-346. Zbl1042.81052MR1852853DOI10.1142/S0219025701000553
  10. LIEBSHER, V., On a central limit theorem for monotone noise, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 2, no. 2 (1999), 155-167. MR1805839DOI10.1142/S0219025799000084
  11. LU, Y. G., The Boson and Fermion quantum Brownian motions as quantum central limits of the quantum Bernoulli processes, Boll. Un. Mat. Ital. B (7) 6, no. 2 (1992), 245-273. Zbl0858.60026MR1171102
  12. MEYER, P. A., "Quantum probability for probabilists", Lecture Notes in Mathematics1538, Springer-Verlag, Berlin, 1993. Zbl0773.60098MR1222649DOI10.1007/978-3-662-21558-6
  13. MURAKI, N., The five independencies as natural products, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 6, no. 3 (2003), 337-371. Zbl1053.81057MR2016316DOI10.1142/S0219025703001365
  14. SKEIDE, M., Quantum stochastic calculus on full Fock modules, J. Funct. Anal., 173, no. 2 (2000), 401-452. Zbl0973.46057MR1760621DOI10.1006/jfan.2000.3579
  15. SPEICHER, R., On universal product, Fields Inst. Commun., 12 (1997), 257-266. Zbl0877.46044MR1426844
  16. SPEICHER, R. - VON WALDENFELS, W., A general central limit theorem and invariance principle, in Quantum Probability and Related Topics, Editor L. Accardi, World Scientific Vol., 9 (1994), 371-387. 
  17. SPEICHER, R. - WOROUDI, R., Boolean convolution, Fields Inst. Commun., 12 (1997), 267-279. MR1426845
  18. VON WALDENFELS, W., An approach to the theory of pressure broadening of spectral lines, In: "Probability and Information Theory II", M. Behara - K. Krickeberg - J. Wolfowitz (eds.), Lect. Notes Math., 296 (1973), 19-64. MR421496

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.