Groups Generated by (near) Mutually Engel Periodic Pairs
Piotr Słanina; Witold Tomaszewski
Bollettino dell'Unione Matematica Italiana (2007)
- Volume: 10-B, Issue: 2, page 485-497
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topSłanina, Piotr, and Tomaszewski, Witold. "Groups Generated by (near) Mutually Engel Periodic Pairs." Bollettino dell'Unione Matematica Italiana 10-B.2 (2007): 485-497. <http://eudml.org/doc/290362>.
@article{Słanina2007,
abstract = {We use notations: $[x, y]=[x_\{,1\} y]$ and $[x_\{,k+1\} y]$ e $[[x_\{,k\} y], y]$. We consider groups generated by $x$, $y$ satisfying relations $x = [x_\{,n\} y], y = [y_\{,n\} x]$ or $[x, y]=[x_\{,n\} y]$, $[y, x]=[y_\{,n\} x]$. We call groups of the first type mep-groups and of the second type nmep-groups. We show many properties and examples of mep- and nmep-groups. We prove that if $p$ is a prime then the group $Sl_2(p)$ is a nmep-group. We give the necessary and sufficient conditions for metacyclic group to be a nmep-group and we show that nmep-groups with presentation $\langle x,y \mid [x,y] = [x_\{,2\} y], [y,x]=[y_\{,2\} x], x^n, y^m \rangle$ are finite.},
author = {Słanina, Piotr, Tomaszewski, Witold},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {485-497},
publisher = {Unione Matematica Italiana},
title = {Groups Generated by (near) Mutually Engel Periodic Pairs},
url = {http://eudml.org/doc/290362},
volume = {10-B},
year = {2007},
}
TY - JOUR
AU - Słanina, Piotr
AU - Tomaszewski, Witold
TI - Groups Generated by (near) Mutually Engel Periodic Pairs
JO - Bollettino dell'Unione Matematica Italiana
DA - 2007/6//
PB - Unione Matematica Italiana
VL - 10-B
IS - 2
SP - 485
EP - 497
AB - We use notations: $[x, y]=[x_{,1} y]$ and $[x_{,k+1} y]$ e $[[x_{,k} y], y]$. We consider groups generated by $x$, $y$ satisfying relations $x = [x_{,n} y], y = [y_{,n} x]$ or $[x, y]=[x_{,n} y]$, $[y, x]=[y_{,n} x]$. We call groups of the first type mep-groups and of the second type nmep-groups. We show many properties and examples of mep- and nmep-groups. We prove that if $p$ is a prime then the group $Sl_2(p)$ is a nmep-group. We give the necessary and sufficient conditions for metacyclic group to be a nmep-group and we show that nmep-groups with presentation $\langle x,y \mid [x,y] = [x_{,2} y], [y,x]=[y_{,2} x], x^n, y^m \rangle$ are finite.
LA - eng
UR - http://eudml.org/doc/290362
ER -
References
top- COXETER, H.S.M., MOSER, W.O.J., Generators and Relations for Discrete Groups, Berlin-Heildeberg-New York1980. Zbl0422.20001MR562913
- HEINEKEN, H., Groups generated by two mutually Engel Periodic elements, Bolletino U.M.I., (8) 3-B (2000), 461-470. Zbl0982.20016MR1769996
- KARGAPOLOV, M.I., MERZLJAKOV, JU. I., Fundamentals of the Theory of Groups, Springer-Verlag, New York, 1979. Zbl0549.20001MR551207
- MAGNUS, W., KARRASS, A., SOLITAR, D., Combinatorial Group Theory, Dover Publications, Inc. New York1976. MR422434
- ROTMAN, J.J., An Introduction to the Theory of Groups, Springer-Verlag, Inc. New York1995. Zbl0810.20001MR1307623DOI10.1007/978-1-4612-4176-8
- ZASSENHAUS, H.J., The Theory of Groups, Dover Publications, Inc., Mineola, New York1999. Zbl0943.20002MR1644892
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.