PHH Harmonic Submersions are Stable
Bollettino dell'Unione Matematica Italiana (2007)
- Volume: 10-B, Issue: 3, page 1081-1088
 - ISSN: 0392-4041
 
Access Full Article
topAbstract
topHow to cite
topAprodu, Monica Alice. "PHH Harmonic Submersions are Stable." Bollettino dell'Unione Matematica Italiana 10-B.3 (2007): 1081-1088. <http://eudml.org/doc/290365>.
@article{Aprodu2007,
	abstract = {We prove that PHH harmonic submersions are (weakly) stable.},
	author = {Aprodu, Monica Alice},
	journal = {Bollettino dell'Unione Matematica Italiana},
	language = {eng},
	month = {10},
	number = {3},
	pages = {1081-1088},
	publisher = {Unione Matematica Italiana},
	title = {PHH Harmonic Submersions are Stable},
	url = {http://eudml.org/doc/290365},
	volume = {10-B},
	year = {2007},
}
TY  - JOUR
AU  - Aprodu, Monica Alice
TI  - PHH Harmonic Submersions are Stable
JO  - Bollettino dell'Unione Matematica Italiana
DA  - 2007/10//
PB  - Unione Matematica Italiana
VL  - 10-B
IS  - 3
SP  - 1081
EP  - 1088
AB  - We prove that PHH harmonic submersions are (weakly) stable.
LA  - eng
UR  - http://eudml.org/doc/290365
ER  - 
References
top- APRODU, M. A. - APRODU, M. - BRINZANESCU, V., A class of harmonic maps and minimal submanifolds. Int. J. Math., 11 (2000), 1177-1191. Zbl0978.58006MR1809307DOI10.1142/S0129167X0000057X
 - APRODU, M. A. - APRODU, M., Implicitly defined harmonic PHH submersions. Manuscripta Math., 100 (1999), 103-121. Zbl0938.53035MR1714452DOI10.1007/s002290050198
 - BAIRD, P. - WOOD, J. C., Harmonic Morphisms Between Riemannian Manifolds. Oxford Univ. Press2003. Zbl1055.53049MR2044031DOI10.1093/acprof:oso/9780198503620.001.0001
 - BURNS, D. - BURSTALL, F. - DE BARTOLOMEIS, P. - RAWNSLEY, J., Stability of harmonic maps of Ka Èhler manifolds. J. Differential Geom., 30 (1989), 579-594. Zbl0678.53062MR1010173
 - LICHNEROWICZ, A., Applications harmoniques et veriétés kählériennes. Symp. Math. III (Bologna1970), 341-402. MR262993
 - LOUBEAU, E., Pseudo Harmonic Morphisms. Int. J. Math., 7 (1997), 943-957. Zbl0910.58010MR1482972DOI10.1142/S0129167X97000457
 - MONTALDO, S., Stability of harmonic morphisms to a surface, Int. J. Math., 9 (1998), 865-875. Zbl0979.58007MR1651053DOI10.1142/S0129167X98000361
 - URAKAWA, K., Calculus of variations and harmonic maps. Transl. Math. Monographs Vol. 132. AMSProvidence, Rhode Island: 1993. Zbl0799.58001MR1252178
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.