PHH Harmonic Submersions are Stable
Bollettino dell'Unione Matematica Italiana (2007)
- Volume: 10-B, Issue: 3, page 1081-1088
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topAprodu, Monica Alice. "PHH Harmonic Submersions are Stable." Bollettino dell'Unione Matematica Italiana 10-B.3 (2007): 1081-1088. <http://eudml.org/doc/290365>.
@article{Aprodu2007,
abstract = {We prove that PHH harmonic submersions are (weakly) stable.},
author = {Aprodu, Monica Alice},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {1081-1088},
publisher = {Unione Matematica Italiana},
title = {PHH Harmonic Submersions are Stable},
url = {http://eudml.org/doc/290365},
volume = {10-B},
year = {2007},
}
TY - JOUR
AU - Aprodu, Monica Alice
TI - PHH Harmonic Submersions are Stable
JO - Bollettino dell'Unione Matematica Italiana
DA - 2007/10//
PB - Unione Matematica Italiana
VL - 10-B
IS - 3
SP - 1081
EP - 1088
AB - We prove that PHH harmonic submersions are (weakly) stable.
LA - eng
UR - http://eudml.org/doc/290365
ER -
References
top- APRODU, M. A. - APRODU, M. - BRINZANESCU, V., A class of harmonic maps and minimal submanifolds. Int. J. Math., 11 (2000), 1177-1191. Zbl0978.58006MR1809307DOI10.1142/S0129167X0000057X
- APRODU, M. A. - APRODU, M., Implicitly defined harmonic PHH submersions. Manuscripta Math., 100 (1999), 103-121. Zbl0938.53035MR1714452DOI10.1007/s002290050198
- BAIRD, P. - WOOD, J. C., Harmonic Morphisms Between Riemannian Manifolds. Oxford Univ. Press2003. Zbl1055.53049MR2044031DOI10.1093/acprof:oso/9780198503620.001.0001
- BURNS, D. - BURSTALL, F. - DE BARTOLOMEIS, P. - RAWNSLEY, J., Stability of harmonic maps of Ka Èhler manifolds. J. Differential Geom., 30 (1989), 579-594. Zbl0678.53062MR1010173
- LICHNEROWICZ, A., Applications harmoniques et veriétés kählériennes. Symp. Math. III (Bologna1970), 341-402. MR262993
- LOUBEAU, E., Pseudo Harmonic Morphisms. Int. J. Math., 7 (1997), 943-957. Zbl0910.58010MR1482972DOI10.1142/S0129167X97000457
- MONTALDO, S., Stability of harmonic morphisms to a surface, Int. J. Math., 9 (1998), 865-875. Zbl0979.58007MR1651053DOI10.1142/S0129167X98000361
- URAKAWA, K., Calculus of variations and harmonic maps. Transl. Math. Monographs Vol. 132. AMSProvidence, Rhode Island: 1993. Zbl0799.58001MR1252178
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.