Sums of Three Prime Squares

Hiroshi Mikawa; Temenoujka Peneva

Bollettino dell'Unione Matematica Italiana (2007)

  • Volume: 10-B, Issue: 3, page 549-558
  • ISSN: 0392-4041

Abstract

top
Let A , ϵ > 0 be arbitrary. Suppose that x is a sufficiently large positive number. We prove that the number of integers n ( x , x + x θ ] , satisfying some natural congruence conditions, which cannot be written as the sum of three squares of primes is x θ ( log x ) - A , provided that 7 16 + ϵ θ 1 .

How to cite

top

Mikawa, Hiroshi, and Peneva, Temenoujka. "Sums of Three Prime Squares." Bollettino dell'Unione Matematica Italiana 10-B.3 (2007): 549-558. <http://eudml.org/doc/290367>.

@article{Mikawa2007,
abstract = {Let $A, \epsilon > 0$ be arbitrary. Suppose that $x$ is a sufficiently large positive number. We prove that the number of integers $n \in (x, x+x^\theta]$, satisfying some natural congruence conditions, which cannot be written as the sum of three squares of primes is $\ll x^\theta(\log x)^\{-A\}$, provided that $\frac\{7\}\{16\} + \epsilon \leq \theta \leq 1$.},
author = {Mikawa, Hiroshi, Peneva, Temenoujka},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {549-558},
publisher = {Unione Matematica Italiana},
title = {Sums of Three Prime Squares},
url = {http://eudml.org/doc/290367},
volume = {10-B},
year = {2007},
}

TY - JOUR
AU - Mikawa, Hiroshi
AU - Peneva, Temenoujka
TI - Sums of Three Prime Squares
JO - Bollettino dell'Unione Matematica Italiana
DA - 2007/10//
PB - Unione Matematica Italiana
VL - 10-B
IS - 3
SP - 549
EP - 558
AB - Let $A, \epsilon > 0$ be arbitrary. Suppose that $x$ is a sufficiently large positive number. We prove that the number of integers $n \in (x, x+x^\theta]$, satisfying some natural congruence conditions, which cannot be written as the sum of three squares of primes is $\ll x^\theta(\log x)^{-A}$, provided that $\frac{7}{16} + \epsilon \leq \theta \leq 1$.
LA - eng
UR - http://eudml.org/doc/290367
ER -

References

top
  1. BAUER, C. - LIU, M. C. - ZHAN, T., On a sum of three prime squares, J. Number Theory, 85 (2000), 336-359. Zbl0961.11034MR1802721DOI10.1006/jnth.2000.2552
  2. GALLAGHER, P. X., A large sieve density estimate near σ = 1 , Invent. Math., 11 (1970), 329-339. Zbl0219.10048MR279049DOI10.1007/BF01403187
  3. HUA, L. K., Some results in the additive prime number theory, Quart. J. Math. Oxford, 9 (1938), 68-80. Zbl0018.29404MR3363459DOI10.1093/qmath/os-9.1.68
  4. HUXLEY, M. N., Large values of Dirichlet polynomials III, Acta Arith., 26 (1975), 435- 444. Zbl0268.10026MR379395DOI10.4064/aa-26-4-435-444
  5. LEUNG, M. C. - LIU, M. C., On generalized quadratic equations in three prime variables, Monatsh. Math., 115 (1993), 133-169. Zbl0779.11045MR1223248DOI10.1007/BF01311214
  6. LIU, J. Y. - ZHAN, T., Distribution of integers that are sums of three squares of primes, Acta Arith., 98 (2001), 207-228. Zbl0972.11099MR1829623DOI10.4064/aa98-3-1
  7. LIU, J. Y. - ZHAN, T., On a theorem of Hua, Arch. Math. (Basel), 69 (1997), 375-390. Zbl0898.11038MR1473092DOI10.1007/s000130050136
  8. MIKAWA, H., On the sum of three squares of primes, In: Analytic Number Theory (Kyoto, 1996), 253-264, London Math. Soc. Lecture Note Ser., 247, Cambridge Univ. Press, Cambridge, 1997. Zbl0906.11052MR1694995DOI10.1017/CBO9780511666179.017
  9. PERELLI, A. - PINTZ, J., Hardy-Littlewood numbers in short intervals, J. Number Theory, 54 (1995), 297-308. Zbl0851.11056MR1354054DOI10.1006/jnth.1995.1120
  10. PRACHAR, K., Primzahlverteilung, Springer-Verlag, Berlin-New York, 1978. MR516660
  11. SCHWARZ, W., Zur Darstellung von Zahlen durch Summen von Primzahlpotenzen, II, J. Reine Angew. Math., 206 (1961), 78-112. MR126431DOI10.1515/crll.1961.206.78

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.