Fourier Transform of Unbounded Measures on Hypergroups

Massoud Amini

Bollettino dell'Unione Matematica Italiana (2007)

  • Volume: 10-B, Issue: 3, page 819-828
  • ISSN: 0392-4041

Abstract

top
We show that an unbounded measure on a strong commutative hypergroup is transformable if and only if its convolution with any positive definite function of compact support is positive definite.

How to cite

top

Amini, Massoud. "Fourier Transform of Unbounded Measures on Hypergroups." Bollettino dell'Unione Matematica Italiana 10-B.3 (2007): 819-828. <http://eudml.org/doc/290373>.

@article{Amini2007,
abstract = {We show that an unbounded measure on a strong commutative hypergroup is transformable if and only if its convolution with any positive definite function of compact support is positive definite.},
author = {Amini, Massoud},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {819-828},
publisher = {Unione Matematica Italiana},
title = {Fourier Transform of Unbounded Measures on Hypergroups},
url = {http://eudml.org/doc/290373},
volume = {10-B},
year = {2007},
}

TY - JOUR
AU - Amini, Massoud
TI - Fourier Transform of Unbounded Measures on Hypergroups
JO - Bollettino dell'Unione Matematica Italiana
DA - 2007/10//
PB - Unione Matematica Italiana
VL - 10-B
IS - 3
SP - 819
EP - 828
AB - We show that an unbounded measure on a strong commutative hypergroup is transformable if and only if its convolution with any positive definite function of compact support is positive definite.
LA - eng
UR - http://eudml.org/doc/290373
ER -

References

top
  1. ARGABRIGHT, L. - DE LAMADRID, J., Fourier analysis of unbounded measures on locally compact abelian groups, Memoirs of the American Mathematical Society, No. 145, American Mathematical Society, Providence, R.I., 1974. Zbl0294.43002MR621876
  2. AMINI, M. - MEDGHALCHI, A., Fourier algebras on tensor hypergrups, Contemporary Math.363 (2004), 1-14. Zbl1061.43010MR2097946DOI10.1090/conm/363/06637
  3. BAAKE, M., Diffraction of weighted lattice subsets, Canad. Math. Bull.45, no. 4 (2002), 483-498. Zbl1161.52309MR1941223DOI10.4153/CMB-2002-050-2
  4. BLOOM, W. R., HEYER, H., Harmonic analysis of probability measures on hypergroups, de Gruyter Studies in Mathematics 20, Walter de Gruyter, Berlin, New York, 1995. Zbl0828.43005MR1312826DOI10.1515/9783110877595
  5. BOURBAKI, N., Elements de Mathematique, Integration, 2nd ed., Herman, Paris, 1965. MR209424
  6. EYMARD, P., L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France92 (1964), 181-236. Zbl0169.46403MR228628
  7. GHAHRAMANI, F. - MEDGHALCHI, A. R., Compact multipliers on weighted hypergroup algebras I, II, Math. Proc. Camb. Phil. Soc.98 (1985), 493-500, 100 (1986), 145-149. Zbl0584.43004MR838661DOI10.1017/S0305004100065944
  8. JEWETT, R. I., Spaces with an abstract convolution of measures, Advances in Math.18 (1975), 1-110. MR394034DOI10.1016/0001-8708(75)90002-X
  9. RUDIN, W., Fourier analysis on groups, Wiley Classics Library, John Wiley and Sons, Inc., New York, 1990. Zbl0698.43001MR1038803DOI10.1002/9781118165621

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.