Fitting Conditions for Symmetric Algebras of Modules of Finite Projective Dimension

Cristodor Ionescu; Gaetana Restuccia; Rosanna Utano

Bollettino dell'Unione Matematica Italiana (2007)

  • Volume: 10-B, Issue: 3, page 681-696
  • ISSN: 0392-4041

Abstract

top
Let E be a finitely generated R -module, having finite projective dimension. We study the acyclicity of the approximation complex 𝒵 ( E ) of E in terms of certain Fitting conditions F k ( i ) on the Fitting ideals of the i -th module of a projective resolution of E . We deduce some good properties of the symmetric algebra of E .

How to cite

top

Ionescu, Cristodor, Restuccia, Gaetana, and Utano, Rosanna. "Fitting Conditions for Symmetric Algebras of Modules of Finite Projective Dimension." Bollettino dell'Unione Matematica Italiana 10-B.3 (2007): 681-696. <http://eudml.org/doc/290375>.

@article{Ionescu2007,
abstract = {Let $E$ be a finitely generated $R$-module, having finite projective dimension. We study the acyclicity of the approximation complex $\mathcal\{Z\}(E)$ of $E$ in terms of certain Fitting conditions $F_k^\{(i)\}$ on the Fitting ideals of the $i$-th module of a projective resolution of $E$. We deduce some good properties of the symmetric algebra of $E$.},
author = {Ionescu, Cristodor, Restuccia, Gaetana, Utano, Rosanna},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {681-696},
publisher = {Unione Matematica Italiana},
title = {Fitting Conditions for Symmetric Algebras of Modules of Finite Projective Dimension},
url = {http://eudml.org/doc/290375},
volume = {10-B},
year = {2007},
}

TY - JOUR
AU - Ionescu, Cristodor
AU - Restuccia, Gaetana
AU - Utano, Rosanna
TI - Fitting Conditions for Symmetric Algebras of Modules of Finite Projective Dimension
JO - Bollettino dell'Unione Matematica Italiana
DA - 2007/10//
PB - Unione Matematica Italiana
VL - 10-B
IS - 3
SP - 681
EP - 696
AB - Let $E$ be a finitely generated $R$-module, having finite projective dimension. We study the acyclicity of the approximation complex $\mathcal{Z}(E)$ of $E$ in terms of certain Fitting conditions $F_k^{(i)}$ on the Fitting ideals of the $i$-th module of a projective resolution of $E$. We deduce some good properties of the symmetric algebra of $E$.
LA - eng
UR - http://eudml.org/doc/290375
ER -

References

top
  1. AVRAMOV, L. L., Complete intersections and symmetric algebras, J. Algebra, 73 (1981), 248-263. Zbl0516.13001MR641643DOI10.1016/0021-8693(81)90357-4
  2. AUSLANDER, M. - BRIDGER, M., Stable module theory, Mem. Amer. Math. Soc.94 (1969). Zbl0204.36402MR269685
  3. BUCHSBAUM, D. - EISENBUD, D., What makes a complex exact?, J. Algebra, 25 (1973), 259-268. Zbl0264.13007MR314819DOI10.1016/0021-8693(73)90044-6
  4. BRUNS, W. - HERZOG, J., Cohen-Macaulay rings, Cambridge University Press, Cambridge, 1998. MR1251956
  5. EISENBUD, D. - HUNEKE, C. - ULRICH, B., Heights of ideals of minors, Amer. J. Math., 126 (2004), 417-438. Zbl1080.13007MR2045507
  6. EAGON, J. - NORTHCOTT, D. G., Ideals defined by matrices and a certain complex associated with them, Proc. Royal Soc. London Ser. A, 269 (1962), 188-204. Zbl0106.25603MR142592
  7. HERZOG, J. - SIMIS, A. - VASCONCELOS, W. V., On the arithmetic and homology of algebras of linear type, Trans. Amer. Math. Soc., 283 (1984), 661-683. Zbl0541.13005MR737891DOI10.2307/1999153
  8. HERZOG, J. - SIMIS, A. - VASCONCELOS, W. V., Koszul homology and blowing-up rings, Commutative algebra (Trento, 1981), pp. 79-169, Lecture Notes in Pure and Appl. Math., 84, Dekker, New York, 1983. Zbl0499.13002MR686942
  9. KÜHL, M., On the symmetric algebra of an ideal, Manuscripta Math., 37 (1982), 49-60. MR649563DOI10.1007/BF01239944
  10. LEBELT, K., Freie Auflösungen äuerer Potenzen, Manuscripta Math., 21 (1977), 341- 355. MR450253DOI10.1007/BF01167853
  11. MOLICA, G. - RESTUCCIA, G., Torsion free exterior powers of a module and their resolutions, An. Şt. Univ. Ovidius Constanta, 10 (2002), 101-108. Zbl1060.13502MR2070190
  12. RESTUCCIA, G., On the ideal of relations of a symmetric algebra, Rend. Sem. Mat. Univers. Politecn. Torino, 49 (1991), 281-298. Zbl0794.13007MR1219272
  13. RESTUCCIA, G., On the symmetric algebra for a module of projective dimension two, An. St. Univ. Bucarest Mat., 40 (1991), 83-91. Zbl0781.13007MR1220268
  14. RESTUCCIA, G. - IONESCU, C., q-torsion freeness of symmetric powers, Rend. Circ. Mat. Palermo, XLVI (1997), 329-346. Zbl0899.13015MR1608489DOI10.1007/BF02844276
  15. SIMIS, A. - VASCONCELOS, W. V., The syzygies of the conormal module, Amer. J. Math.103 (1981), 203-224. Zbl0467.13009MR610474DOI10.2307/2374214
  16. UTANO, R. - RESTUCCIA, G., Integrity of the symmetric algebra of modules of projective dimension two, Riv. Mat. Univ. Parma, 4 (1995), 193-204. Zbl0882.13025MR1395336
  17. TCHERNEV, A. B., Acyclicity of symmetric and exterior powers of complexes, J. Algebra, 184 (1996), 1113-1135. Zbl0876.13006MR1407888DOI10.1006/jabr.1996.0302
  18. VASCONCELOS, W. V., On linear complete intersections, J. Algebra, 111 (1987), 306- 315. Zbl0648.13007MR916168DOI10.1016/0021-8693(87)90218-3
  19. VASCONCELOS, W. V., Symmetric algebras, Lect. Notes in Math., 1430 (1988), 115-160. MR1068327DOI10.1007/BFb0085540
  20. WEYMAN, J., Resolutions of the exterior and symmetric powers of a module, J. Algebra, 58 (1979), 333-341. Zbl0444.18010MR540642DOI10.1016/0021-8693(79)90164-9

NotesEmbed ?

top

You must be logged in to post comments.