Fitting Conditions for Symmetric Algebras of Modules of Finite Projective Dimension
Cristodor Ionescu; Gaetana Restuccia; Rosanna Utano
Bollettino dell'Unione Matematica Italiana (2007)
- Volume: 10-B, Issue: 3, page 681-696
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topIonescu, Cristodor, Restuccia, Gaetana, and Utano, Rosanna. "Fitting Conditions for Symmetric Algebras of Modules of Finite Projective Dimension." Bollettino dell'Unione Matematica Italiana 10-B.3 (2007): 681-696. <http://eudml.org/doc/290375>.
@article{Ionescu2007,
abstract = {Let $E$ be a finitely generated $R$-module, having finite projective dimension. We study the acyclicity of the approximation complex $\mathcal\{Z\}(E)$ of $E$ in terms of certain Fitting conditions $F_k^\{(i)\}$ on the Fitting ideals of the $i$-th module of a projective resolution of $E$. We deduce some good properties of the symmetric algebra of $E$.},
author = {Ionescu, Cristodor, Restuccia, Gaetana, Utano, Rosanna},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {681-696},
publisher = {Unione Matematica Italiana},
title = {Fitting Conditions for Symmetric Algebras of Modules of Finite Projective Dimension},
url = {http://eudml.org/doc/290375},
volume = {10-B},
year = {2007},
}
TY - JOUR
AU - Ionescu, Cristodor
AU - Restuccia, Gaetana
AU - Utano, Rosanna
TI - Fitting Conditions for Symmetric Algebras of Modules of Finite Projective Dimension
JO - Bollettino dell'Unione Matematica Italiana
DA - 2007/10//
PB - Unione Matematica Italiana
VL - 10-B
IS - 3
SP - 681
EP - 696
AB - Let $E$ be a finitely generated $R$-module, having finite projective dimension. We study the acyclicity of the approximation complex $\mathcal{Z}(E)$ of $E$ in terms of certain Fitting conditions $F_k^{(i)}$ on the Fitting ideals of the $i$-th module of a projective resolution of $E$. We deduce some good properties of the symmetric algebra of $E$.
LA - eng
UR - http://eudml.org/doc/290375
ER -
References
top- AVRAMOV, L. L., Complete intersections and symmetric algebras, J. Algebra, 73 (1981), 248-263. Zbl0516.13001MR641643DOI10.1016/0021-8693(81)90357-4
- AUSLANDER, M. - BRIDGER, M., Stable module theory, Mem. Amer. Math. Soc.94 (1969). Zbl0204.36402MR269685
- BUCHSBAUM, D. - EISENBUD, D., What makes a complex exact?, J. Algebra, 25 (1973), 259-268. Zbl0264.13007MR314819DOI10.1016/0021-8693(73)90044-6
- BRUNS, W. - HERZOG, J., Cohen-Macaulay rings, Cambridge University Press, Cambridge, 1998. MR1251956
- EISENBUD, D. - HUNEKE, C. - ULRICH, B., Heights of ideals of minors, Amer. J. Math., 126 (2004), 417-438. Zbl1080.13007MR2045507
- EAGON, J. - NORTHCOTT, D. G., Ideals defined by matrices and a certain complex associated with them, Proc. Royal Soc. London Ser. A, 269 (1962), 188-204. Zbl0106.25603MR142592
- HERZOG, J. - SIMIS, A. - VASCONCELOS, W. V., On the arithmetic and homology of algebras of linear type, Trans. Amer. Math. Soc., 283 (1984), 661-683. Zbl0541.13005MR737891DOI10.2307/1999153
- HERZOG, J. - SIMIS, A. - VASCONCELOS, W. V., Koszul homology and blowing-up rings, Commutative algebra (Trento, 1981), pp. 79-169, Lecture Notes in Pure and Appl. Math., 84, Dekker, New York, 1983. Zbl0499.13002MR686942
- KÜHL, M., On the symmetric algebra of an ideal, Manuscripta Math., 37 (1982), 49-60. MR649563DOI10.1007/BF01239944
- LEBELT, K., Freie Auflösungen äuerer Potenzen, Manuscripta Math., 21 (1977), 341- 355. MR450253DOI10.1007/BF01167853
- MOLICA, G. - RESTUCCIA, G., Torsion free exterior powers of a module and their resolutions, An. Şt. Univ. Ovidius Constanta, 10 (2002), 101-108. Zbl1060.13502MR2070190
- RESTUCCIA, G., On the ideal of relations of a symmetric algebra, Rend. Sem. Mat. Univers. Politecn. Torino, 49 (1991), 281-298. Zbl0794.13007MR1219272
- RESTUCCIA, G., On the symmetric algebra for a module of projective dimension two, An. St. Univ. Bucarest Mat., 40 (1991), 83-91. Zbl0781.13007MR1220268
- RESTUCCIA, G. - IONESCU, C., q-torsion freeness of symmetric powers, Rend. Circ. Mat. Palermo, XLVI (1997), 329-346. Zbl0899.13015MR1608489DOI10.1007/BF02844276
- SIMIS, A. - VASCONCELOS, W. V., The syzygies of the conormal module, Amer. J. Math.103 (1981), 203-224. Zbl0467.13009MR610474DOI10.2307/2374214
- UTANO, R. - RESTUCCIA, G., Integrity of the symmetric algebra of modules of projective dimension two, Riv. Mat. Univ. Parma, 4 (1995), 193-204. Zbl0882.13025MR1395336
- TCHERNEV, A. B., Acyclicity of symmetric and exterior powers of complexes, J. Algebra, 184 (1996), 1113-1135. Zbl0876.13006MR1407888DOI10.1006/jabr.1996.0302
- VASCONCELOS, W. V., On linear complete intersections, J. Algebra, 111 (1987), 306- 315. Zbl0648.13007MR916168DOI10.1016/0021-8693(87)90218-3
- VASCONCELOS, W. V., Symmetric algebras, Lect. Notes in Math., 1430 (1988), 115-160. MR1068327DOI10.1007/BFb0085540
- WEYMAN, J., Resolutions of the exterior and symmetric powers of a module, J. Algebra, 58 (1979), 333-341. Zbl0444.18010MR540642DOI10.1016/0021-8693(79)90164-9
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.