Threefolds with Kodaira Dimension 0 or 3

Ezio Stagnaro

Bollettino dell'Unione Matematica Italiana (2007)

  • Volume: 10-B, Issue: 3, page 1149-1182
  • ISSN: 0392-4033

Abstract

top
Using the theory of adjoints and pluricanonical adjoints, we construct three nonsingular threefolds, as desingularizations of degree six hypersurfaces in 4 , having the irregularities q 1 = q 2 = 0 and the following periodical sequences of plurigenera respectively ( p g , P 2 , P 3 , , P m , ) = ( 0 , 0 , 1 , 0 , 0 , 1 , ) , ( 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , ) , ( 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , ) . In the Appendix, starting from the second above-mentioned example, we construct a threefold of general type with q q 1 = q 2 = 0 , p g = 1 , P 2 = 2 whose m-canonical transformation is birational if and only if m 11 .

How to cite

top

Stagnaro, Ezio. "Threefolds with Kodaira Dimension 0 or 3." Bollettino dell'Unione Matematica Italiana 10-B.3 (2007): 1149-1182. <http://eudml.org/doc/290383>.

@article{Stagnaro2007,
abstract = {Using the theory of adjoints and pluricanonical adjoints, we construct three nonsingular threefolds, as desingularizations of degree six hypersurfaces in $\mathbb\{P\}^4$, having the irregularities $q_1=q_2= 0$ and the following periodical sequences of plurigenera respectively \begin\{equation*\}(p\_g,P\_2, P\_3, \ldots, P\_m, \ldots) = (0, 0, 1, 0, 0, 1,\ldots),(0, 0, 0, 1, 0, 0, 0, 1, \ldots), (0, 0, 0, 0, 1, 0, 0, 0, 0, 1, \ldots).\end\{equation*\}In the Appendix, starting from the second above-mentioned example, we construct a threefold of general type with $qq_1 = q_2 = 0, p_g =1$, $P_2=2$ whose m-canonical transformation is birational if and only if $m \geq 11$.},
author = {Stagnaro, Ezio},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {1149-1182},
publisher = {Unione Matematica Italiana},
title = {Threefolds with Kodaira Dimension 0 or 3},
url = {http://eudml.org/doc/290383},
volume = {10-B},
year = {2007},
}

TY - JOUR
AU - Stagnaro, Ezio
TI - Threefolds with Kodaira Dimension 0 or 3
JO - Bollettino dell'Unione Matematica Italiana
DA - 2007/10//
PB - Unione Matematica Italiana
VL - 10-B
IS - 3
SP - 1149
EP - 1182
AB - Using the theory of adjoints and pluricanonical adjoints, we construct three nonsingular threefolds, as desingularizations of degree six hypersurfaces in $\mathbb{P}^4$, having the irregularities $q_1=q_2= 0$ and the following periodical sequences of plurigenera respectively \begin{equation*}(p_g,P_2, P_3, \ldots, P_m, \ldots) = (0, 0, 1, 0, 0, 1,\ldots),(0, 0, 0, 1, 0, 0, 0, 1, \ldots), (0, 0, 0, 0, 1, 0, 0, 0, 0, 1, \ldots).\end{equation*}In the Appendix, starting from the second above-mentioned example, we construct a threefold of general type with $qq_1 = q_2 = 0, p_g =1$, $P_2=2$ whose m-canonical transformation is birational if and only if $m \geq 11$.
LA - eng
UR - http://eudml.org/doc/290383
ER -

References

top
  1. CHEN, M., On the Q-divisor method and its application, J. of Pure and Appl. Algebra, 191 (2004), 143-156. Zbl1049.14034MR2048311DOI10.1016/j.jpaa.2004.01.001
  2. CHIARUTTINI, S., RONCONI, M. C., Varietà regolari di dimensione 3, genere 0 e bigenere 1, Rapporto Tecnico n. 24 - Marzo 1992, Dip. Met. Mod. Mat., Università di Padova. 
  3. IANO-FLETCHER, A. R., Working with weighted complete intersections, Explicit birational geometry of 3-folds, London Math. Soc., Lecture Note Ser.281, Cambridge Univ. Press, Cambridge (2000), 101-173. Zbl0960.14027MR1798982
  4. GODEAUX, L., Théorie des involutions cycliques appartenant à une surface algébrique et applications, CNR, Monografie Matematiche11, Ed. Cremonese, Roma (1963). Zbl0133.13901MR155221
  5. GODEAUX, L., Sur les Variétés Algébrique à trois dimensions de genre géométrique zéro et de bigenre un, Rend. Circ. Mat. di Palermo, Serie II, Tomo XIV (1965), 237-246. Zbl0154.21102MR208463DOI10.1007/BF02847722
  6. GODEAUX, L., Sur les Variétés Algébrique à trois dimensions de pentagenre un, Acad. Roy. de Belgique, Bull. Cl. des Sc., Série 5, Tome LI (1965), 945-955. Zbl0136.16303MR200781
  7. REID, M., Young Person's Guide to Canonical Singularity, Proc. Algebraic Geometry, Bowdoin 1985, Vol. 46, A.M.S. (1987), pp. 345-414. MR927963
  8. RONCONI, M. C., A threefold of general type with q 1 = q 2 = p g = P 2 = 0 , Proc. Monodromy Conference, Steklov Institute, Moscow, June 25-30, 2001, Acta Appl. Mathematicae, 75 (2003), 133-150. Zbl1051.14047MR1975564DOI10.1023/A:1022336011727
  9. STAGNARO, E., Adjoints and pluricanonical adjoints to an algebraic hypersurface, Annali di Mat. Pura ed Appl., 180 (2001), 147-201. Zbl1072.14044MR1847403DOI10.1007/s10231-001-8201-6
  10. STAGNARO, E., Pluricanonical maps of a threefold of general type, Proc. Greco Conference, Catania, "Le Matematiche", Vol. LV (2000) - Fasc. II, 533-543. Zbl1072.14045MR1984218
  11. UENO, K., Birational Geometry of Algebraic Threefolds, Journées de géométrie algébriques d'Angers 1979, Sijthoff and Noordhoff1980, 311-323. MR605349

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.