Local Existence of Solutions for Perturbation Problems with Non Linear Symmetries

Marc Lesimple; Tullio Valent

Bollettino dell'Unione Matematica Italiana (2007)

  • Volume: 10-B, Issue: 3, page 707-714
  • ISSN: 0392-4033

Abstract

top
The existence of local families of solutions for perturbation equations is proved when the free operator is covariant under a non linear action of a Lie group.

How to cite

top

Lesimple, Marc, and Valent, Tullio. "Local Existence of Solutions for Perturbation Problems with Non Linear Symmetries." Bollettino dell'Unione Matematica Italiana 10-B.3 (2007): 707-714. <http://eudml.org/doc/290384>.

@article{Lesimple2007,
abstract = {The existence of local families of solutions for perturbation equations is proved when the free operator is covariant under a non linear action of a Lie group.},
author = {Lesimple, Marc, Valent, Tullio},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {707-714},
publisher = {Unione Matematica Italiana},
title = {Local Existence of Solutions for Perturbation Problems with Non Linear Symmetries},
url = {http://eudml.org/doc/290384},
volume = {10-B},
year = {2007},
}

TY - JOUR
AU - Lesimple, Marc
AU - Valent, Tullio
TI - Local Existence of Solutions for Perturbation Problems with Non Linear Symmetries
JO - Bollettino dell'Unione Matematica Italiana
DA - 2007/10//
PB - Unione Matematica Italiana
VL - 10-B
IS - 3
SP - 707
EP - 714
AB - The existence of local families of solutions for perturbation equations is proved when the free operator is covariant under a non linear action of a Lie group.
LA - eng
UR - http://eudml.org/doc/290384
ER -

References

top
  1. FLATO, M. - PINCZON, G. - SIMON, J., Non linear representations of Lie groups, Ann. scient. Éc. Norm. Sup. 4e serie t. 10 (1977), 405-418. MR507241
  2. LESIMPLE, M. - VALENT, T., Transversality of covariant mappings admitting a potential, Rend. Lincei Mat. Appl., 18 (2007), 117-124. Zbl1223.22011MR2314166DOI10.4171/RLM/484
  3. MARSDEN, J. E. - HUGHES, T. J. R., Mathematical foundations of elasticity, Prentice-Hall, Englewood Cliffs, NJ, 1983. Zbl0545.73031
  4. PINCZON, G., Non linear multipliers and applications, Pacific J. Math. Vol., 116, No. 2 (1985), 359-400. Zbl0579.22015MR771640
  5. VALENT, T., An abstract setting for boundary problems with affine symmetries, Rend. Mat. Acc. Lincei, s. 9, Vol. 7 (1996), 47-58. Zbl0871.47043MR1437651
  6. VALENT, T., Non linear symmetries of mapping. Existence theorems for perturbation problem in the presence of symmetries, Recent Developments in Partial Differential Equations, quaderni di matematica Vol 2, Seconda Università di Napoli, Caserta-1998, 211-253. Zbl0928.58028MR1688693
  7. VALENT, T., On the notion of potential for mappings between linear spaces. A generalized version of the Poincaré lemma, Bollettino U.M.I. (8) 6-B (2003), 381-392. Zbl1150.58001MR1988211

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.