Quasiharmonic Fields: a Higher Integrability Result
Bollettino dell'Unione Matematica Italiana (2007)
- Volume: 10-B, Issue: 3, page 843-851
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topDi Gironimo, Patrizia. "Quasiharmonic Fields: a Higher Integrability Result." Bollettino dell'Unione Matematica Italiana 10-B.3 (2007): 843-851. <http://eudml.org/doc/290398>.
@article{DiGironimo2007,
abstract = {In this paper we study the degree of integrability of quasiharmonic fields. These fields are connected with the study of the equation $\operatorname\{div\}(A(x)\nabla u(x))= 0$, where the symmetric matrix $A(x)$ satisfies the condition $|\xi|^2+|A(x)\xi|^2 \leq K(x)\langle A(x)\xi,\xi\rangle$.The nonnegative function $K(x)$ belongs to the exponential class, i.e. $\exp(\beta K(x))$ is integrable for some $\beta >0$. We prove that the gradient of a local solution of the equation belongs to the Zygmund spaces $L^2_\{\text\{loc\}\} \log^\{\alpha - 1\}L$, $0 < \alpha = \alpha (\beta)$. Moreover we show exactly how the degree of improved regularity depends on $\beta$.},
author = {Di Gironimo, Patrizia},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {843-851},
publisher = {Unione Matematica Italiana},
title = {Quasiharmonic Fields: a Higher Integrability Result},
url = {http://eudml.org/doc/290398},
volume = {10-B},
year = {2007},
}
TY - JOUR
AU - Di Gironimo, Patrizia
TI - Quasiharmonic Fields: a Higher Integrability Result
JO - Bollettino dell'Unione Matematica Italiana
DA - 2007/10//
PB - Unione Matematica Italiana
VL - 10-B
IS - 3
SP - 843
EP - 851
AB - In this paper we study the degree of integrability of quasiharmonic fields. These fields are connected with the study of the equation $\operatorname{div}(A(x)\nabla u(x))= 0$, where the symmetric matrix $A(x)$ satisfies the condition $|\xi|^2+|A(x)\xi|^2 \leq K(x)\langle A(x)\xi,\xi\rangle$.The nonnegative function $K(x)$ belongs to the exponential class, i.e. $\exp(\beta K(x))$ is integrable for some $\beta >0$. We prove that the gradient of a local solution of the equation belongs to the Zygmund spaces $L^2_{\text{loc}} \log^{\alpha - 1}L$, $0 < \alpha = \alpha (\beta)$. Moreover we show exactly how the degree of improved regularity depends on $\beta$.
LA - eng
UR - http://eudml.org/doc/290398
ER -
References
top- FARACO, D. - KOSKELA, P. - ZHONG, X., Mappings of finite distortion: the degree of regularity, Advances in Mathematics, 190 (2005), 300-318. Zbl1075.30012MR2102659DOI10.1016/j.aim.2003.12.009
- GOL'DSTEIN, V. - VODOP'YANOV, S., Quasiconformal mappings and spaces of funtions with generalized first derivatives, Sibirsk. Mat. Z., 17 (1976), 515-531. MR414869
- GRECO, L. - IWANIEC, T. - MOSCARIELLO, G., Limits of the improved integrability of the volume forms, Indiana Univ. Math. Journ., n. 2 (1995), 305-339. Zbl0855.42009MR1355401DOI10.1512/iumj.1995.44.1990
- HENCL, S. - MALY, J., Mappings of finite distortion: Hausdorff measure of zero sets, Math. Ann., 324 (2002), 451-464. Zbl1017.30030MR1938454DOI10.1007/s00208-002-0347-z
- IWANIEC, T., p-Harmonic tensors and quasiregular mappings, Annals of Math., 136 (1992), 651-685. Zbl0785.30009MR1189867DOI10.2307/2946602
- IWANIEC, T. - MIGLIACCIO, L. - MOSCARIELLO, G. - PASSARELLI DI NAPOLI, A., A priori estimates for non linear elliptic complexes, Advances in Diff. Eq., 8 (2003), 513-546. Zbl1290.35074MR1972489
- IWANIEC, T. - SBORDONE, C., On the integrability of the Jacobians under minimal hypothesis, Arch. Rat. Mech. Anal., 119 (1992), 129-143. Zbl0766.46016MR1176362DOI10.1007/BF00375119
- IWANIEC, T. - SBORDONE, C., Quasiharmonic fields, Ann. Inst. H. Poincaré, AN18, 5 (2001), 519-527. MR1849688DOI10.1016/S0294-1449(00)00058-5
- MIGLIACCIO, L. - MOSCARIELLO, G., Higher integrability of div-curl products, Ricerche di Matematica, (1) XLIX (2000), 151-161. MR1795037
- MOSCARIELLO, G., On the integrability of finite energy solutions for p-harmonic equations, Nodea, 11 (2004) 393-406. Zbl1102.35039MR2090281DOI10.1007/s00030-004-2020-6
- RAO, M. M. - REN, Z. D., Theory of Orlicz spaces, Marcel Dekker, City, 1991. Zbl0724.46032MR1113700
- SBORDONE, C., New estimates for div-curl products and very weak solutions of P.D.E.'s, Ann. Scuola Norm. Sup. Pisa, 25 (1997), 739-756. Zbl1073.35515MR1655540
- STEIN, E. M., Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, NJ, 1970. Zbl0207.13501MR290095
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.