Contractivity and Asymptotics in Wasserstein Metrics for Viscous Nonlinear Scalar Conservation Laws
José A. Carrillo; Marco Di Francesco; Corrado Lattanzio
Bollettino dell'Unione Matematica Italiana (2007)
- Volume: 10-B, Issue: 2, page 277-292
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topCarrillo, José A., Di Francesco, Marco, and Lattanzio, Corrado. "Contractivity and Asymptotics in Wasserstein Metrics for Viscous Nonlinear Scalar Conservation Laws." Bollettino dell'Unione Matematica Italiana 10-B.2 (2007): 277-292. <http://eudml.org/doc/290403>.
@article{Carrillo2007,
abstract = {In this work, recent results concerning the long time asymptotics of one- dimensional scalar conservation laws with probability densities as initial data are reviewed and further applied to the case of viscous conservation laws with nonlinear degenerate diffusions. The non-strict contraction of the maximal transport distance together with a uniform expansion of the solutions lead to the existence of time-de- pendent asymptotic profiles for a large class of convection-diffusion problems with fully general nonlinearities and with degenerate diffusion.},
author = {Carrillo, José A., Di Francesco, Marco, Lattanzio, Corrado},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {277-292},
publisher = {Unione Matematica Italiana},
title = {Contractivity and Asymptotics in Wasserstein Metrics for Viscous Nonlinear Scalar Conservation Laws},
url = {http://eudml.org/doc/290403},
volume = {10-B},
year = {2007},
}
TY - JOUR
AU - Carrillo, José A.
AU - Di Francesco, Marco
AU - Lattanzio, Corrado
TI - Contractivity and Asymptotics in Wasserstein Metrics for Viscous Nonlinear Scalar Conservation Laws
JO - Bollettino dell'Unione Matematica Italiana
DA - 2007/6//
PB - Unione Matematica Italiana
VL - 10-B
IS - 2
SP - 277
EP - 292
AB - In this work, recent results concerning the long time asymptotics of one- dimensional scalar conservation laws with probability densities as initial data are reviewed and further applied to the case of viscous conservation laws with nonlinear degenerate diffusions. The non-strict contraction of the maximal transport distance together with a uniform expansion of the solutions lead to the existence of time-de- pendent asymptotic profiles for a large class of convection-diffusion problems with fully general nonlinearities and with degenerate diffusion.
LA - eng
UR - http://eudml.org/doc/290403
ER -
References
top- AGUEH, M., Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory, Adv. Differential Equations, 10 (2005), 309-360. Zbl1103.35051MR2123134
- AMBROSIO, L. - GIGLI, N. - SAVARÉ, G., Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics ETH Zurich. Birkhauser Verlag, Basel, 2005. MR2129498
- ANDREUCCI, D., Degenerate parabolic equations with initial data measures, Trans. Amer. Math. Soc., 349 (10) (1997), 3911-3923. Zbl0885.35056MR1333384DOI10.1090/S0002-9947-97-01530-4
- BÉNILAN, P. - BOUILLET, J. E., On a parabolic equation with slow and fast diffusions, Nonlinear Anal., 26 (4) (1996), 813-822. Zbl0840.35052MR1362754DOI10.1016/0362-546X(94)00321-8
- BOLLEY, F. - BRENIER, Y. - LOEPER, G., Contractive metrics for scalar conservation laws, J. Hyperbolic Differ. Equ., 2 (2005), 91-107. Zbl1071.35081MR2134955DOI10.1142/S0219891605000397
- BOLLEY, F. - CARRILLO, J. A., Tanaka Theorem for Inelastic Maxwell Models, To appear in Comm. Math. Phys. MR2346391DOI10.1007/s00220-007-0336-x
- BRENIER, Y., Minimal geodesics on groups of volume-preserving maps and generalized solutions of the Euler equations, Comm. Pure Appl. Math., 52 (1999), 411-452, 1999. Zbl0910.35098MR1658919DOI10.1002/(SICI)1097-0312(199904)52:4<411::AID-CPA1>3.0.CO;2-3
- BRENIER, Y., formulation of multidimensional scalar conservation laws, to appear in Arch. Ration. Mech. Anal. Zbl1180.35346MR2506069DOI10.1007/s00205-009-0214-0
- CARLEN, E. - GANGBO, W., Constrained steepest descent in the 2-Wasserstein metric, Ann. of Math., 157 (2003), 807-846. Zbl1038.49040MR1983782DOI10.4007/annals.2003.157.807
- CARRILLO, J., Entropy solutions for nonlinear degenerate problems, Arch. Ration. Mech. Anal., 147 (1999), 269-361. Zbl0935.35056MR1709116DOI10.1007/s002050050152
- CARRILLO, J. A. - DI FRANCESCO, M. - GUALDANI, M. P., Semidiscretization and long- time asymptotics of nonlinear diffusion equations, Comm. Math. Sci., 1 (2007), 21-53. Zbl1145.35028MR2301287DOI10.4310/CMS.2007.v5.n5.a4
- CARRILLO, J. A. - DI FRANCESCO, M. - LATTANZIO, C., Contractivity of Wasserstein metrics and asymptotic profiles for scalar conservation laws, J. Differential Equations, 231 (2006), 425-458. Zbl1168.35390MR2287892DOI10.1016/j.jde.2006.07.017
- CARRILLO, J. A. - DI FRANCESCO, M. - TOSCANI, G., Intermediate asymptotics beyond homogeneity and self-similarity: long time behavior for , Arch. Rational Mech. Anal., 180 (2006), 127-149. Zbl1096.35015MR2211709DOI10.1007/s00205-005-0403-4
- CARRILLO, J. A. - GUALDANI, M. P. - TOSCAN, G., Finite speed of propagation in porous media by mass transportation methods, C. R. Acad. Sci. Paris, 338 (2004), 815-818. MR2059493DOI10.1016/j.crma.2004.03.025
- CARRILLO, J. A., MCCANN, R. J. - VILLANI, C., Contractions in the 2-Wasserstein length space and thermalization of granular media, Arch. Rational Mech. Anal., 179 (2006), 217-264. Zbl1082.76105MR2209130DOI10.1007/s00205-005-0386-1
- CARRILLO, J. A. - TOSCANI, G., Wasserstein metric and large-time asymptotics of nonlinear diffusion equations, In New trends in mathematical physics, World Sci. Publ., Hackensack, NJ, 2004, 234-244. Zbl1089.76055MR2163983
- CARRILLO, J. A. - VÁZQUEZ, J. L., Asymptotic Complexity in Filtration Equations, To appear in J. Evol. Equ. MR2328935DOI10.1007/s00028-006-0298-z
- CRANDALL, M. - PIERRE, M., Regularizing effects for in , J. Funct. Anal., 45 (1982), 194-212. Zbl0483.35076MR647071DOI10.1016/0022-1236(82)90018-0
- CULLEN, M. - GANGBO, W., A variational approach for the 2-dimensional semi- geostrophic shallow water equations, Arch. Ration. Mech. Anal., 156 (2001) 241-273. Zbl0985.76008MR1816477DOI10.1007/s002050000124
- DI FRANCESCO, M. - MARKOWICH, P. A., Entropy dissipation and Wasserstein metric methods for the viscous Burgers' equation: convergence to diffusive waves, In Partial Differential Equations and Inverse Problems, 362 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2004, 145-165. Zbl1062.35111MR2091496DOI10.1090/conm/362/06610
- DI FRANCESCO, M. - WUNSCH, M., Large time behavior in Wasserstein spaces and relative entropy for bipolar drift-diffusion-Poisson models, to appear in Monat. Math. Zbl1159.35008MR2395521DOI10.1007/s00605-008-0532-6
- EVJE, S. - KARLSEN, K. H., Viscous splitting approximation of mixed hyperbolic- parabolic convection-diffusion equations, Numer. Math., 83 (1) (1999), 107-137. Zbl0961.65084MR1702599DOI10.1007/s002110050441
- ESCOBEDO, M. - VÁZQUEZ, J. L. - ZUAZUA, E., Asymptotic behaviour and source-type solutions for a diffusion-convection equation, Arch. Rational Mech. Anal., 124 (1) (1993), 43-65. MR1233647DOI10.1007/BF00392203
- HOPF, E., The partial differential equation , Comm. Pure Appl. Math., 3 (1950), 201-230. Zbl0039.10403MR47234DOI10.1002/cpa.3160030302
- KALASHNIKOV, A. S., Some problems of the qualitative theory of second-order non-linear degenerate parabolic equations, Uspekhi Mat. Nauk, 42 (2(254)) (1987), 135- 176, 287. MR898624
- LAURENÇOT, P. - SIMONDON, F., Long-time behaviour for porous medium equations with convection, Proc. Roy. Soc. Edinburgh Sect. A, 128 (2) (1998), 315-336. Zbl0906.35050MR1621331DOI10.1017/S0308210500012816
- LIU, T. P. - PIERRE, M., Source-solutions and asymptotic behavior in conservation laws, J. Differential Equations, 51 (1984), 419-441. Zbl0545.35057MR735207DOI10.1016/0022-0396(84)90096-2
- LOTT, J. - VILLANI, C., Ricci curvature for metric-measure spaces via optimal transport, To appear in Ann. of Math. Zbl1178.53038MR2480619DOI10.4007/annals.2009.169.903
- MCCANN, R. J., Stable rotating binary stars and fluid in a tube, Houston J. Math., 32 (2006), 603-632. Zbl1096.85006MR2219334
- OTTO, F., The geometry of dissipative evolution equation: the porous medium equation, Comm. Partial Differential Equations, 26 (2001), 101-174. Zbl0984.35089MR1842429DOI10.1081/PDE-100002243
- OTTO, F. - WESTDICKENBERG, M., Eulerian calculus for the contraction in the wasserstein distance, SIAM J. Math. Anal., 37 (2005), 1227-1255. Zbl1094.58016MR2192294DOI10.1137/050622420
- STURM, K. T., Convex functionals of probability measures and nonlinear diffusions on manifolds, J. Math. Pures Appl., 84 (2005) 149-168. Zbl1259.49074MR2118836DOI10.1016/j.matpur.2004.11.002
- TOSCANI, G., A central limit theorem for solutions of the porous medium equation, J. Evol. Equ., 5 (2005), 185-203. Zbl1082.35091MR2133441DOI10.1007/s00028-005-0183-1
- VÁZQUEZ, J. L., The Porous Medium Equation. New contractivity results, Progress in Nonlinear Differential Equations and Their Applications, 63 (205) (Volume in honor of H. Brezis, Proceedings of Gaeta Congress, June 2004), 433-451. MR2176734DOI10.1007/3-7643-7384-9_42
- VILLANI, C., Topics in optimal transportation, 58 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2003. MR1964483DOI10.1007/b12016
- VILLANI, C., Optimal transport, old and new, Lecture Notes for the 2005 Saint-Flour summer school, to appear in Springer2007. MR2815763DOI10.1007/978-3-642-21216-1
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.