The Probabilistic Zeta Function of the Alternating Group Alt ( p + 1 )

Marilena Massa

Bollettino dell'Unione Matematica Italiana (2007)

  • Volume: 10-B, Issue: 3, page 581-591
  • ISSN: 0392-4033

Abstract

top
We study the irreducibility of the Dirichlet polynomial P G ( s ) when G is the alternating group on p + 1 elements with p prime and we prove that P G ( s ) is irreducible for infinitely many choiches of p .

How to cite

top

Massa, Marilena. "The Probabilistic Zeta Function of the Alternating Group $\operatorname{Alt} (p + 1)$." Bollettino dell'Unione Matematica Italiana 10-B.3 (2007): 581-591. <http://eudml.org/doc/290407>.

@article{Massa2007,
abstract = {We study the irreducibility of the Dirichlet polynomial $P_G(s)$ when $G$ is the alternating group on $p + 1$ elements with $p$ prime and we prove that $P_G(s)$ is irreducible for infinitely many choiches of $p$.},
author = {Massa, Marilena},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {581-591},
publisher = {Unione Matematica Italiana},
title = {The Probabilistic Zeta Function of the Alternating Group $\operatorname\{Alt\} (p + 1)$},
url = {http://eudml.org/doc/290407},
volume = {10-B},
year = {2007},
}

TY - JOUR
AU - Massa, Marilena
TI - The Probabilistic Zeta Function of the Alternating Group $\operatorname{Alt} (p + 1)$
JO - Bollettino dell'Unione Matematica Italiana
DA - 2007/10//
PB - Unione Matematica Italiana
VL - 10-B
IS - 3
SP - 581
EP - 591
AB - We study the irreducibility of the Dirichlet polynomial $P_G(s)$ when $G$ is the alternating group on $p + 1$ elements with $p$ prime and we prove that $P_G(s)$ is irreducible for infinitely many choiches of $p$.
LA - eng
UR - http://eudml.org/doc/290407
ER -

References

top
  1. ALLADI, K. - SOLOMON, R. - TURULL, A., Finite simple groups of bounded subgroup chain length, J. Algebra, 231 (2000), 374-386. Zbl0962.20014MR1779605DOI10.1006/jabr.2000.8371
  2. BOSTON, NIGEL, A probabilistic generalization of the Riemann zeta function, Analytic number theory, Vol. 1 (Allerton Park, IL, 1995) 138 (1996), 155-162. Zbl0853.11075MR1399336
  3. BROWN, KENNETH S., The coset poset and probabilistic zeta function of a finite group, J. Algebra, 225, no. 2 (2000), 989-1012. Zbl0973.20016MR1741574DOI10.1006/jabr.1999.8221
  4. DAMIAN, ERIKA ANDREA, - LUCCHINI FIORENZA, - MORINI, Some properties of the probabilistic zeta function of finite simple groups, Pacific J. Math., 215 (2004), 3-14. Zbl1113.20063MR2060491DOI10.2140/pjm.2004.215.3
  5. DIXON, JOHN D. - MORTIMER, BRIAN, Permutation groups, Graduate Texts in Mathematics, vol. 163, Springer-Verlag, New York, 1996. Zbl0951.20001MR1409812DOI10.1007/978-1-4612-0731-3
  6. HALL, PHILIP, The eulerian functions of a group, Quart. J. Math., no. 7 (1936), 134-151. Zbl0014.10402
  7. HARDY, G. H. - WRIGHT, E. M., An introduction to the theory of numbers, fifth ed., The Clarendon Press Oxford University Press, New York, 1979. Zbl0423.10001MR568909
  8. MANN, AVINOAM, Positively finitely generated groups, Forum Math.8, no. 4 (1996), 429-459. Zbl0852.20019MR1393323DOI10.1515/form.1996.8.429
  9. RIBENBOIM, P., The New Book of Prime Number Records, Springer-Verlag, New York, 1989, 23-24. MR1016815DOI10.1007/978-1-4684-0507-1
  10. SHARESHIAN, JOHN, On the probabilistic zeta function for finite groups, J. Algebra210, no. 2 (1998), 703-707. Zbl1013.11058MR1662324DOI10.1006/jabr.1998.7560

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.