A Note on Strong Lie Derived Length of Group Algebras

Francesco Catino; Ernesto Spinelli

Bollettino dell'Unione Matematica Italiana (2007)

  • Volume: 10-B, Issue: 1, page 83-86
  • ISSN: 0392-4033

Abstract

top
For a group algebra KG of a non-abelian group G over a field K of positive characteristic p we study the strong Lie derived length of the associated Lie algebra.

How to cite

top

Catino, Francesco, and Spinelli, Ernesto. "A Note on Strong Lie Derived Length of Group Algebras." Bollettino dell'Unione Matematica Italiana 10-B.1 (2007): 83-86. <http://eudml.org/doc/290409>.

@article{Catino2007,
abstract = {For a group algebra KG of a non-abelian group G over a field K of positive characteristic p we study the strong Lie derived length of the associated Lie algebra.},
author = {Catino, Francesco, Spinelli, Ernesto},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {83-86},
publisher = {Unione Matematica Italiana},
title = {A Note on Strong Lie Derived Length of Group Algebras},
url = {http://eudml.org/doc/290409},
volume = {10-B},
year = {2007},
}

TY - JOUR
AU - Catino, Francesco
AU - Spinelli, Ernesto
TI - A Note on Strong Lie Derived Length of Group Algebras
JO - Bollettino dell'Unione Matematica Italiana
DA - 2007/2//
PB - Unione Matematica Italiana
VL - 10-B
IS - 1
SP - 83
EP - 86
AB - For a group algebra KG of a non-abelian group G over a field K of positive characteristic p we study the strong Lie derived length of the associated Lie algebra.
LA - eng
UR - http://eudml.org/doc/290409
ER -

References

top
  1. BAGINSKI, C., A note on the derived length of the unit group of a modular group algebra, Comm. Algebra, 30 (2002), 4905-4913. Zbl1017.16022MR1940471DOI10.1081/AGB-120014675
  2. BOVDI, A. A. - KURDICS, J., Lie properties of the group algebra and the nilpotency class of the group of units, J. Algebra, 212 (1999), 28-64. Zbl0936.16028MR1670626DOI10.1006/jabr.1998.7617
  3. ROSSMANITH, R., Lie centre-by-metabelian group algebras in even characteristic I, Israel J. Math., 115 (2000), 51-75. Zbl0947.16016MR1749673DOI10.1007/BF02810580
  4. SAHAI, M., Lie solvable group algebras of derived length three, Publ. Mat., 39 (1995), 233-240. Zbl0856.16025MR1370883DOI10.5565/PUBLMAT_39295_02
  5. SEHGAL, S.K., Topics in group rings, Marcel Dekker, New York (1978). MR508515
  6. SHALEV, A., The derived length of Lie soluble group rings I, J. Pure Appl. Algebra, 78 (1992), 291-300. Zbl0765.16007MR1163281DOI10.1016/0022-4049(92)90111-R
  7. SHALEV, A., The derived length of Lie soluble group rings II, J. London Math. Soc., 49 (1994), 93-99. Zbl0804.16026MR1253014DOI10.1112/jlms/49.1.93

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.