A New L 1 -Lower Semicontinuity Result

Daniele Graziani

Bollettino dell'Unione Matematica Italiana (2007)

  • Volume: 10-B, Issue: 3, page 797-818
  • ISSN: 0392-4033

Abstract

top
The aim of this work is to prove a chain rule and an L 1 -lower semicontinuity theorems for integral functional defined on B V ( Ω ) . Moreover we apply this result in order to obtain new relaxation and Γ -convergence result without any coerciveness and any continuity assumption of the integrand f ( x , s , p ) with respect to the variable s .

How to cite

top

Graziani, Daniele. "A New $L^1$-Lower Semicontinuity Result." Bollettino dell'Unione Matematica Italiana 10-B.3 (2007): 797-818. <http://eudml.org/doc/290417>.

@article{Graziani2007,
abstract = {The aim of this work is to prove a chain rule and an $L^1$-lower semicontinuity theorems for integral functional defined on $BV(\Omega)$. Moreover we apply this result in order to obtain new relaxation and $\Gamma$-convergence result without any coerciveness and any continuity assumption of the integrand $f(x, s, p)$ with respect to the variable $s$.},
author = {Graziani, Daniele},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {797-818},
publisher = {Unione Matematica Italiana},
title = {A New $L^1$-Lower Semicontinuity Result},
url = {http://eudml.org/doc/290417},
volume = {10-B},
year = {2007},
}

TY - JOUR
AU - Graziani, Daniele
TI - A New $L^1$-Lower Semicontinuity Result
JO - Bollettino dell'Unione Matematica Italiana
DA - 2007/10//
PB - Unione Matematica Italiana
VL - 10-B
IS - 3
SP - 797
EP - 818
AB - The aim of this work is to prove a chain rule and an $L^1$-lower semicontinuity theorems for integral functional defined on $BV(\Omega)$. Moreover we apply this result in order to obtain new relaxation and $\Gamma$-convergence result without any coerciveness and any continuity assumption of the integrand $f(x, s, p)$ with respect to the variable $s$.
LA - eng
UR - http://eudml.org/doc/290417
ER -

References

top
  1. AMAR, M. - DE CICCO, V., A continuity result for integral functionals defined on B V ( Ω ) , to appear. Zbl0735.49010
  2. AMBROSIO, L., New lower semicontinuity result for integral functionals, Rend. Accad. Naz. Sci. XL Mem. Mat. (5) 11, no. 1 (1987), 1-42. Zbl0642.49007MR930856
  3. AMBROSIO, L. - FUSCO, N. - PALLARA, D., Functions of bounded variation and free discontinuity problems, Oxford University Press (2000). Zbl0957.49001MR1857292
  4. BRAIDES, A., Γ -convergence for beginners, Oxford University Press, New york (2000). MR1968440DOI10.1093/acprof:oso/9780198507840.001.0001
  5. BOUCHITTÉ, E. - FONSECA, I. MASCARENHAS, L., A global method for relaxation, Arch. Rat. Mech. Anal., 145, no. 1 (1998). MR1656477DOI10.1007/s002050050124
  6. DAL MASO, G., Integral representation on B V ( Ω ) of Γ -limit of variational integrals, Manuscripta Math., 30 (1980), 387-416. Zbl0435.49016MR567216DOI10.1007/BF01301259
  7. DAL MASO, G., Introduction to Γ -convergence, Birkhauser, Boston (1993). Zbl0816.49001MR1201152DOI10.1007/978-1-4612-0327-8
  8. DAL MASO, G. - LE FLOCH, P. G. - MURAT, F., Definition and weak stability of nonconservative product, J. Math. Pures Appl., 74 (1995), 483-548. Zbl0853.35068MR1365258
  9. DE CICCO, V., A lower semicontinuity result for functionals defined on B V ( Ω ) . Ricerche di Mat., 39 (1990), 293-325. Zbl0735.49010MR1114522
  10. DE CICCO, V., Lower semicontinuity result for certain functionals defined on B V ( Ω ) , Boll. U.M.I5-B (1991), 291-313. Zbl0738.46012MR1111124
  11. DE CICCO, V. - FUSCO, N. - VERDE, A., A chain rule formula in B V ( Ω ) and application to lower semicontinuity, to appear on Calc. Var. Zbl1136.49011MR2293980DOI10.1007/s00526-006-0048-7
  12. DE CICCO, V. - FUSCO, N. - VERDE, A., On L 1 -lower semicontinuity on B V ( Ω ) . To appear on J. on Convex Analysis. MR2135805
  13. DE CICCO, V. - LEONI, G., A chain rule in L 1 ( div ; Ω ) and its applications to lower semicontinuity, Calc. Var., 19 (2004), 23-51. Zbl1056.49019MR2027846DOI10.1007/s00526-003-0192-2
  14. DE GIORGI, E., Teoremi di semicontinuità nel Calcolo Delle Variazioni, Istituto Nazionale di Alta Matematica, 1968-1969. 
  15. DE GIORGI, E. - BUTTAZZO, G. - DAL MASO, G., On the lower semicontinuity of certain integral functionals, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 74 (1983), 274-282. Zbl0554.49006MR758347
  16. DE GIORGI, E. - FRANZONI, T., Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Mat. Natur., 58 (1975), 842-850. MR448194
  17. DE GIORGI, E. - FRANZONI, T., Su un tipo di convergenza variazionale, Rend. Sem. Mat. Brescia, 3 (1979), 63-101. 
  18. FONSECA, I. - LEONI, G., On lower semicontinuity and relaxation, Proc. R. Soc. Edim., Sect. A, Math., 131 (2001), 519-565. Zbl1003.49015MR1838501DOI10.1017/S0308210500000998
  19. FUSCO, N. - GIANNETTI, F. - VERDE, A., A remark on the L 1 -lower semicontinuity for integral functionals in B V ( Ω ) , Manuscripta Math., 112 (2003), 313-323. Zbl1030.49014MR2067041DOI10.1007/s00229-003-0400-6
  20. FUSCO, N. - GORI, M. - MAGGI, F., A remark on the Serrin's theorem, to appear. Zbl1215.49024MR2314327DOI10.1007/s00030-006-4018-8
  21. GORI, M. - MARCELLINI, P., An extension of the Serrin's lower semicontinuity theorem, J. on Convex Analysis, 9 (2002). Zbl1019.49021MR1970568
  22. GORI, M. - MAGGI, F. - MARCELLINI, P., Some sharp condition for lower semicontinuity in L 1 , Diff. Int. Equations, 16 (2003), 51-76. Zbl1028.49012MR1948872
  23. MIRANDA, M., Superfici cartesiane generalizzate ed insiemi aperti di perimetro localmente finito sui prodotti cartesiani, Ann. Scuola Norm. Sup. Pisa, 18 (1964), 515-542. Zbl0152.24402MR174706
  24. SERRIN, J., On the definition and properties of certain variational integrals, Trans. Amer. Math. Soc., 161 (1961), 139-167. Zbl0102.04601MR138018DOI10.2307/1993416

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.