Finite Simple Groups Admitting Minimally Irreducible Characters of Prime Power Degree
Bollettino dell'Unione Matematica Italiana (2007)
- Volume: 10-B, Issue: 3, page 613-621
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topPellegrini, Marco Antonio. "Finite Simple Groups Admitting Minimally Irreducible Characters of Prime Power Degree." Bollettino dell'Unione Matematica Italiana 10-B.3 (2007): 613-621. <http://eudml.org/doc/290423>.
@article{Pellegrini2007,
abstract = {In this paper we classify the finite simple groups that admit an irreducible complex character of prime power degree which is reducible over any proper sub-group.},
author = {Pellegrini, Marco Antonio},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {613-621},
publisher = {Unione Matematica Italiana},
title = {Finite Simple Groups Admitting Minimally Irreducible Characters of Prime Power Degree},
url = {http://eudml.org/doc/290423},
volume = {10-B},
year = {2007},
}
TY - JOUR
AU - Pellegrini, Marco Antonio
TI - Finite Simple Groups Admitting Minimally Irreducible Characters of Prime Power Degree
JO - Bollettino dell'Unione Matematica Italiana
DA - 2007/10//
PB - Unione Matematica Italiana
VL - 10-B
IS - 3
SP - 613
EP - 621
AB - In this paper we classify the finite simple groups that admit an irreducible complex character of prime power degree which is reducible over any proper sub-group.
LA - eng
UR - http://eudml.org/doc/290423
ER -
References
top- BALOG, A. - BESSENRODT, C. - OLSSON, J. B. - ONO, K., Prime power degree representations of the symmetric and alternating groups, J. London Math. Soc. (2) 64, no. 2, (2001), 344-356. Zbl1018.20008MR1853455DOI10.1112/S0024610701002356
- CARTER, R. W., Finite groups of Lie type. Conjugacy classes and complex characters. A Wiley-Interscience Publication. John Wiley and Sons, Inc., New York, 1985. Zbl0567.20023MR794307
- CONWAY, J. H. - CURTIS, R. T. - NORTON, S. P. - PARKER, R. A. - WILSON, R. A., Atlas of finite groups. Oxford University Press, 1985. Zbl0568.20001MR827219
- CURTIS, C. W. - REINER, I., Methods of representation theory. Vol. II. With applications to finite groups and orders, A Wiley-Interscience Publication. John Wiley and Sons, Inc., New York, 1987. Zbl0616.20001MR892316
- DALLA VOLTA, F. - DI MARTINO, L., Minimally irreducible groups of prime degree, Bull. Austral. Math. Soc., 62, no. 2 (2000), 335-345. Zbl0973.20042MR1786216DOI10.1017/S0004972700018815
- DALLA VOLTA, F. - DI MARTINO, L. - PREVITALI, A., On minimally irreducible groups of degree the product of two primes, J. Group Theory, 6, no. 1 (2003), 11-56. Zbl1048.20028MR1953793DOI10.1515/jgth.2003.003
- DORNHOFF, L., Group representation theory. Part A: Ordinary representation theory, Marcel Dekker, Inc., New York, 1971. Zbl0227.20002MR347959
- GÉRARDIN, P., Weil representations associated to finite fields, J. Algebra, 46, (1) (1977), 54-101. MR460477DOI10.1016/0021-8693(77)90394-5
- HOWE, R. E., On the character of Weil's representation, Trans. Amer. Math. Soc., 177, (1973), 287-298. Zbl0263.22014MR316633DOI10.2307/1996597
- HUPPERT, B., Endliche Gruppen. I, Die Grundlehren der Mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York1967. MR224703
- KLEIDMAN, P. - LIEBECK, M., The subgroup structure of the finite classical groups, London Mathematical Society Lecture Note Series, 129. Cambridge University Press, Cambridge, 1990. Zbl0697.20004MR1057341DOI10.1017/CBO9780511629235
- MALLE, G. - SAXL, J. - WEIGEL, T., Generation of classical groups, Geom. Dedicata, 49, no. 1 (1994), 85-116.. Zbl0832.20029MR1261575DOI10.1007/BF01263536
- MALLE, G. - ZALESSKII, A. E.!, Prime power degree representations of quasi-simple groups, Arch. Math. (Basel) 77, no. 6 (2001), 461-468. Zbl0996.20006MR1879049DOI10.1007/PL00000518
- PELLEGRINI, M. A., A generalized Cameron-Kantor Theorem, J. Algebra, 304, no. 1 (2006), 397-418. MR2256399DOI10.1016/j.jalgebra.2006.02.016
- SEITZ, G. M., Flag-transitive subgroups of Chevalley groups, Ann. of Math. (2) 97 (1973), 27-56. Zbl0338.20052MR340446DOI10.2307/1970876
- SEITZ, G. M., Some representations of classical groups, J. London Math. Soc. (2) 10 (1975), 115-120. Zbl0333.20039MR369556DOI10.1112/jlms/s2-10.1.115
- ZSIGMONDY, K., Zur Theorie der Potenzreste, Monatsh. für Math. u. Phys., 3 (1892), 265-284. MR1546236DOI10.1007/BF01692444
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.