Deficient Coerciveness Estimate for an Abstract Differential Equation with a Parameter Dependent Boundary Conditions
Aissa Aibeche; Angelo Favini; Chahrazed Mezoued
Bollettino dell'Unione Matematica Italiana (2007)
- Volume: 10-B, Issue: 3, page 535-547
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topAibeche, Aissa, Favini, Angelo, and Mezoued, Chahrazed. "Deficient Coerciveness Estimate for an Abstract Differential Equation with a Parameter Dependent Boundary Conditions." Bollettino dell'Unione Matematica Italiana 10-B.3 (2007): 535-547. <http://eudml.org/doc/290424>.
@article{Aibeche2007,
abstract = {In this paper we consider an abstract elliptic differential problem where the equation and the boundary conditions may contain a spectral parameter. We first prove that this problem generates an isomorphism between appropriate spaces and we establish a more precise estimate called coerciveness estimate with defect. The results obtained are applied to study some classes of elliptic, and also possibly degenerate, problems.},
author = {Aibeche, Aissa, Favini, Angelo, Mezoued, Chahrazed},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {535-547},
publisher = {Unione Matematica Italiana},
title = {Deficient Coerciveness Estimate for an Abstract Differential Equation with a Parameter Dependent Boundary Conditions},
url = {http://eudml.org/doc/290424},
volume = {10-B},
year = {2007},
}
TY - JOUR
AU - Aibeche, Aissa
AU - Favini, Angelo
AU - Mezoued, Chahrazed
TI - Deficient Coerciveness Estimate for an Abstract Differential Equation with a Parameter Dependent Boundary Conditions
JO - Bollettino dell'Unione Matematica Italiana
DA - 2007/10//
PB - Unione Matematica Italiana
VL - 10-B
IS - 3
SP - 535
EP - 547
AB - In this paper we consider an abstract elliptic differential problem where the equation and the boundary conditions may contain a spectral parameter. We first prove that this problem generates an isomorphism between appropriate spaces and we establish a more precise estimate called coerciveness estimate with defect. The results obtained are applied to study some classes of elliptic, and also possibly degenerate, problems.
LA - eng
UR - http://eudml.org/doc/290424
ER -
References
top- AGMON, S. - NIRENBERG, L., Properties of Solutions of Ordinary Differential Equation in Banach Spaces, Comm. Pure Appl. Math., 16 (1963), 121-239. Zbl0117.10001MR155203DOI10.1002/cpa.3160160204
- AGRANOVICH, M. S. - VISIK, M. L., Elliptic Problems with a Parameter and Parabolic Problems of General Type, Russian Math. Surveys, 19 (1964), 53-161. MR192188
- AIBECHE, A., Coerciveness Estimates for a Class of Elliptic Problems, Diff. Equ. Dynam. Syst., 4 (1993), 341-351. Zbl0875.35021MR1259173
- AIBECHE, A., Completeness of Generalized Eigenvectors for a Class of Elliptic Problems, Result. Math., 31 (1998), 1-8. Zbl0894.35076MR1610103DOI10.1007/BF03322064
- COBOS, F. - FERNANDEZ, D. L., On Interpolation of Compact Operators, Ark. Mat., 27 (1989), 211-217. Zbl0691.46047MR1022277DOI10.1007/BF02386372
- DENCHE, M., Abstract Differential Equation with a Spectral Parameter in the Boundary Conditions, Result. Math., 35 (1999), 217-227. Zbl0927.35032MR1694903DOI10.1007/BF03322814
- DUNFORD, N. - SCHWARTZ, J. T., Linear Operators, Vol. II, Interscience, New York (1963). MR188745
- FAVINI, A. - GOLDSTEIN, J. A. - ROMANELLI, S., An analytic semigroup associated to a degenerate evolution equation, in Stochastic Processes and Functional Analysis, J. A. Goldstein, N. E. Gretsky and J. J. Uhl Jr. eds, Marcel Dekker, New York, (1997), 88-100. Zbl0889.35039MR1440417
- FAVINI, A. - YAGI, A., Degenerate Differential Equations in Banach Spaces, Marcel Dekker, New York (1999). Zbl0913.34001MR1654663
- KREIN, S. G., Linear Differential Equations in Banach Spaces, American Mathematical Society, Providence (1971). MR342804
- LIONS, J. L., Sur les Espaces d'Interpolation: Dualité, Math. Scand., 9 (1961), 147-177. Zbl0103.08102MR159212DOI10.7146/math.scand.a-10632
- LIONS, J. L. - MAGENES, E., Problèmes aux Limites non Homogènes et applications, Vol. I, Dunod, Paris (1968). MR247243
- LIONS, J. L. - PEETRE, J., Sur une classe d'espaces d'interpolation, Inst. Hautes Etudes Sci. Publ. Math., 19 (1964), 5-68. Zbl0148.11403MR165343
- TRIEBEL, H., Interpolation Theory, Functions Spaces, Differential Operators, North Holland, Amsterdam (1978). Zbl0387.46033MR503903
- YAKUBOV, S. Y., Completeness of Root Functions of Regular Differential Operators, Longman, Scientific and Technical, New York (1994). MR1401350
- YAKUBOV, S. Y., Linear Differential Equations and Applications, Baku, elm (1985). (in Russian). Zbl0622.34001
- YAKUBOV, S. Y., Noncoercive Boundary Value Problems for the Laplace Equation with a Spectral Parameter, Semigroup Forum, 53, (1996), 298-316. Zbl0857.35095MR1406776DOI10.1007/BF02574145
- YAKUBOV, S. Y. - YAKUBOV, Y. Y., Differential-Operator Equations. Ordinary and Partial Differential Equations, Chapman and Hall/CRC Press, New York (2000). Zbl0936.35002MR1739280
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.