Remarks on the Existence of Many Solutions of Certain Nonlinear Elliptic Equations
Bollettino dell'Unione Matematica Italiana (2007)
- Volume: 10-B, Issue: 3, page 1013-1023
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topReferences
top- CHANG, K. C., Infinite dimensional Morse theory and multiple solution problems, Birkhauser, Boston, 1993. Zbl0779.58005MR1196690DOI10.1007/978-1-4612-0385-8
- DANCER, E. N., On the uniqueness of the positive solution of a singularity perturbed problem, Rocky Mtn. J. Math., 25 (1995), 957-975. Zbl0846.35046MR1357103DOI10.1216/rmjm/1181072198
- DANCER, E. N., Stable and finite Morse index solutions on or on bounded domains with small diffusion, Trans. Amer Math., Soc. 357 (2005), 1225-1243. Zbl1145.35369MR2110438DOI10.1090/S0002-9947-04-03543-3
- DANCER, E. N., A note on asymptotic uniqueness for some nonlinearities which change sign, Bull Austral Math. Soc., 61 (2000), 305-312. Zbl0945.35031MR1748710DOI10.1017/S0004972700022309
- DANCER, E.N. - WEI, J., On the profile of solutions with two sharp layers to a singularly perturbed semilinear Dirichlet problem, Proc. Royal Soc. (Edinburgh)127A (1997), 691-701. Zbl0882.35052MR1465415DOI10.1017/S0308210500023775
- DANCER, E. N. - WEI, J., On the location of spikes of solutions with two sharp layers for a singularly perturbed semilinear Dirichlet problem, J. Diff. Eqns., 157 (1999), 82-101. Zbl1087.35507MR1710015DOI10.1006/jdeq.1998.3619
- DANCER, E. N. - YAN, SHUSEN, On the superlinear Lazer-McKenna conjecture, J. Diff Eqns., 21 (2005), 317-351. Zbl1190.35082MR2119987DOI10.1016/j.jde.2004.07.017
- DANCER, E. N. - YAN, SHUSEN, On the superlinear Lazer-McKenna conjecture Part II, Comm. Partial Diff. Eqns., 30 (2005), 1331-1358. Zbl1330.35147MR2180307DOI10.1080/03605300500258865
- DANCER, E. N. - YAN, SHUSEN, On the profile of the changing sign mountain pass solution for an elliptic problem, Trans. Amer. Math. Soc., 354 (2002), 3573-3600. Zbl1109.35041MR1911512DOI10.1090/S0002-9947-02-03026-X
- GIDAS, B. - SPRUCK, J., Global and local behaviour of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598. Zbl0465.35003MR615628DOI10.1002/cpa.3160340406
- GIDAS, B. - SPRUCK, J., A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Diff. Eqns., 6 (1981), 883-901. Zbl0462.35041MR619749DOI10.1080/03605308108820196
- GUI, C. - WEI, J., Multiple interior peak solutions for some singularly perturbed Neumann problems, J. Diff. Eqns., 158 (1999), 1-27. Zbl1061.35502MR1721719DOI10.1016/S0022-0396(99)80016-3
- KWONG, M. - ZHANG, LIQUN, Uniqueness of the positive solutions of in an annulus, Diff. Integral Eqns., 4 (1991), 583-599. Zbl0724.34023MR1097920
- SAUT, J. - TEMAN, R., Generic properties of nonlinear boundary value problems, Comm. Partial Diff. Eqns., 4 (1979), 293-319. Zbl0462.35016MR522714DOI10.1080/03605307908820096
- STRUWE, M., Variational methods, Springer, Berlin, 1996. MR1411681DOI10.1007/978-3-662-03212-1
- WEI, J., On the construction of single peaked solutions to a singularly perturbed semilinear Dirichlet problem, J. Diff. Eqns., 129 (1996), 315-333. Zbl0865.35011MR1404386DOI10.1006/jdeq.1996.0120
- YAN, S., On the number of interior multipeak solutions for singularly perturbed Neumann problems, Topological Methods in Nonlinear Analysis, 12 (1999), 61-78. MR1677747DOI10.12775/TMNA.1998.028