Jacobi's Triple Product Identity and the Quintuple Product Identity
Bollettino dell'Unione Matematica Italiana (2007)
- Volume: 10-B, Issue: 3, page 867-874
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topReferences
top- ALLADI, K., The quintuple product identity and shifted partition functions, J. Comput. Appl. Math., 68 (1996), 3-13. Zbl0867.11071MR1418747DOI10.1016/0377-0427(95)00251-0
- ANDREWS, G. E., A simple proof of Jacobi's triple product identity, Proc. Amer. Math., 16 (1965), 333-334. Zbl0132.30901MR171725DOI10.2307/2033875
- ANDREWS, G. E., Applications of basic hypergeometric functions, SIAM Review, 16 (1974), 441-484. Zbl0299.33004MR352557DOI10.1137/1016081
- ANDREWS, G. E. - ASKEY, R. - ROY, R., Special Functions, Cambridge University Press, Cambridge, 2000. MR1688958DOI10.1017/CBO9781107325937
- ATKIN, A. O. L. - SWINNERTON-DYER, P., Some properties of partitions, Proc. London Math. Soc., 4 (1954), 84-106. Zbl0055.03805MR60535DOI10.1112/plms/s3-4.1.84
- BAILEY, W. N., Series of hypergeometric type which are infinite in both directions, Quart. J. Math. (Oxford) 7 (1936), 105-115. Zbl62.0410.05
- BAILEY, W. N., On the simplification of some identities of the Rogers-Ramanujan type, Proc. London Math. Soc., 1 (1951), 217-221. Zbl0043.06103MR43839DOI10.1112/plms/s3-1.1.217
- CARLITZ, L. - SUBBARAO, M. V., A simple proof of the quintuple product identity, Proc. Amer. Math. Society, 32, 1 (1972), 42-44. MR289316DOI10.2307/2038301
- CHEN, W. Y. C. - CHU, W. - GU, N. S. S., Finite form of the quintuple product identity, Journal of Combinatorial Theory (Series A), 113, 1 (2006), 185-187. Zbl1145.11036MR2192776DOI10.1016/j.jcta.2005.04.002
- CHU, W., Durfee rectangles and the Jacobi triple product identity, Acta Math. Sinica , 9, 1 (1993), 24-26. Zbl0782.05008MR1235637DOI10.1007/BF02559979
- CHU, W., Abel's Lemma on summation by parts and Ramanujan's -series Identity, Aequationes Mathematicae, 72, 1/2 (2006), 172-176. Zbl1116.33018MR2258814DOI10.1007/s00010-006-2830-1
- CHU, W., Abel's Method on summation by parts and Hypergeometric Series, Journal of Difference Equations and Applications, 12, 8 (2006). Zbl1098.33003MR2248785DOI10.1080/10236190600704096
- CHU, W., Abel's Lemma on summation by parts and Basic Hypergeometric Series, Advances in Applied Mathematics, 39, 4 (2007), 490-514. Zbl1131.33008MR2356433DOI10.1016/j.aam.2007.02.001
- CHU, W. - JIA, C. Z., Abel's Method on summation by parts and Terminating Well- Poised q-Series Identities, Journal of Computational and Applied Mathematics, 207, 2 (2007), 360-370. Zbl1123.33013MR2345255DOI10.1016/j.cam.2006.10.011
- COPPER, S., The quintuple product identity, International J. of Number Theory, 2, 1 (2006), 115-161. Zbl1159.33300MR2217798DOI10.1142/S1793042106000401
- EVANS, R. J., Theta function identities, J. Math. Anal. Appl., 147, 1 (1990), 97-121. Zbl0707.11033MR1044689DOI10.1016/0022-247X(90)90387-U
- EWELL, J. A., An easy proof of the triple product identity, Amer. Math. Month., 88 (1981), 270-272. Zbl0471.40001MR610489DOI10.2307/2320552
- FARKAS, H. M. - KRA, IRWIN, On the quintuple product identity, Proc. Amer. Math. Soc., 127, 3 (1999), 771-778. Zbl0932.11029MR1487364DOI10.1090/S0002-9939-99-04791-7
- GASPER, G. - RAHMAN, M., Basic Hypergeometric Series (2nd edition), Cambridge University Press, 2004. Zbl1129.33005MR2128719DOI10.1017/CBO9780511526251
- GORDON, B., Some identities in combinatorial analysis, Quart. J. Math. Oxford, 12 (1961), 285-290. Zbl0107.25101MR136551DOI10.1093/qmath/12.1.285
- HIRSCHHORN, M. D.A generalization of the quintuple product identity, J. Austral. Math. Soc., A44 (1988), 42-45. Zbl0656.05008MR914402
- LEWIS, R. P., A combinatorial proof of the triple product identity, Amer. Math. Month., 91 (1984), 420-423. Zbl0551.05016MR759217DOI10.2307/2322993
- MORDELL, L. J., An identity in combinatorial analysis, Proc. Glasgow Math. Ass., 5 (1961), 197-200. Zbl0107.25102MR138900
- PAULE, P., Short and easy computer proofs of the Rogers-Ramanujan identities and of identities of similar type, Electronic J. of Combinatorics, 1 (1994), R#10. Zbl0814.05009MR1293400
- SEARS, D. B., Two identities of Bailey, J. London Math. Soc., 27 (1952), 510-511. MR50067DOI10.1112/jlms/s1-27.4.510
- SUBBARAO, M. V. - VIDYASAGAR, M., On Watson's quintuple product identity, Proc. Amer. Math. Society, 26, 1 (1970), 23-27. Zbl0203.30502MR263770DOI10.2307/2036795
- WATSON, G. N., Theorems stated by Ramanujan VII: Theorems on continued fractions, J. London Math. Soc., 4 (1929), 39-48. Zbl55.0273.01MR1574903DOI10.1112/jlms/s1-4.1.39
- WATSON, G. N., Ramanujan's Vertumung über Zerfallungsanzahlen, J. Reine Angrew. Math., 179 (1938), 97-128. MR1581588DOI10.1515/crll.1938.179.97
- WRIGHT, E. M., An enumerative proof of an identity of Jacobi, J. of London Math. Soc., 40 (1965), 55-57. Zbl0125.02503MR169826DOI10.1112/jlms/s1-40.1.55
- GUO, V. J. W. - ZENG, J., Short proofs of summation and transformation formulas for basic hypergeometric series, Journal of Mathematical Analysis and Applications, 327, 1 (2007), 310-325. Zbl1106.33017MR2277415DOI10.1016/j.jmaa.2006.04.040